当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
An attention-guided and prior-embedded approach with multi-task learning for shadow detection
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-01-20 , DOI: 10.1016/j.knosys.2020.105540
Shihui Zhang; He Li; Weihang Kong; Xiaowei Zhang; Weidong Ren

Shadow detection is a fundamental and challenging task, requiring understanding accurately the visual semantic context of the shadow region and backgrounds. In this paper, we propose an attention-guided and prior-embedded approach with multi-task learning for shadow detection task. Different from most existing works, we introduce the effective multi-task learning into this target detection task to add the high-level prior into the detection process, instead of using the pertained weighting network as the front-end module and complex recurrent network. Especially, we also employ a channel attention-guided module to complement the high-level feature and low-level feature. Moreover, for the proposed approach with multi-task learning, we design the weighted loss function for effective training. Experimental results on two public available benchmarks demonstrate our approach achieves competitive results than the existing typical shadow detection approaches.
更新日期:2020-01-21

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug