当前位置: X-MOL 学术Compos. Part B Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings
Composites Part B: Engineering ( IF 12.7 ) Pub Date : 2020-01-20 , DOI: 10.1016/j.compositesb.2020.107773
Chenxi Peng , Phuong Tran

Gradual and localised changes in mechanical properties can be achieved by functionally graded cellular structures with the aim to improve structural performance. Gyroid belongs to a class of cellular structures that naturally inspired continuous non-self-intersecting surfaces with controllable mechanical properties. In this work, dynamic compression on functionally graded gyroid and sandwich composite panels constructed from functionally graded gyroid core and metallic facets are numerically investigated and compared to evaluate the dynamic behaviours when subjected to extreme loadings. The Finite Element Analysis (FEA) is employed to characterises the deformation of proposed structures considering the rate-dependent properties, elastoplastic response and nonlinear contact. The Johnson-Cook model is utilised to capture the rate-dependent dynamic responses of the gyroid panels. The numerical model is then validated with experimental results under quasi-static compression. Owing to the symmetry, only a quarter of the gyroid panel is modelled using shell elements, which significantly reduces the computational cost. A series of studies are conducted to demonstrate the influences of different functionally graded cores on the blast resistances of gyroid composite panels. Reaction forces and critical stresses extracted from underneath protected structure are assessed. Gyroid sandwich structures clearly demonstrate unique dynamic crushing responses, impact energy mitigation & dissipation mechanisms, which leads to enhancement of the blast resistance.



中文翻译:

受冲击载荷作用的生物启发功能梯度回旋夹芯板

机械性能的逐渐和局部变化可以通过功能上分级的蜂窝结构来实现,目的是改善结构性能。陀螺属于一类细胞结构,可以自然激发具有可控机械性能的连续非自相交表面。在这项工作中,数值研究了功能梯度回旋体和由功能梯度回旋体芯和金属面构成的夹心复合板的动态压缩,并进行了比较,以评估承受极端载荷时的动态行为。考虑到速率相关的特性,弹塑性响应和非线性接触,采用有限元分析(FEA)来表征拟议结构的变形。Johnson-Cook模型用于捕获回旋板的速率相关动态响应。然后在准静态压缩下用实验结果验证了该数值模型。由于对称性,只有四分之一的回旋面板是使用壳单元建模的,这大大降低了计算成本。进行了一系列研究,以证明不同功能梯度岩心对螺旋复合板抗爆炸性的影响。评估了从受保护结构下方提取的反作用力和临界应力。陀螺夹层结构清楚地展示了独特的动态破碎响应,冲击能量缓解和耗散机制,从而增强了抗爆炸性。然后在准静态压缩下用实验结果验证了该数值模型。由于对称性,只有四分之一的回旋面板是使用壳单元建模的,这大大降低了计算成本。进行了一系列研究,以证明不同功能梯度岩心对螺旋复合板抗爆炸性的影响。评估了从受保护结构下方提取的反作用力和临界应力。陀螺夹层结构清楚地展示了独特的动态破碎响应,冲击能量缓解和耗散机制,从而增强了抗爆炸性。然后在准静态压缩下用实验结果验证了该数值模型。由于对称性,只有四分之一的回旋面板是使用壳单元建模的,这大大降低了计算成本。进行了一系列研究,以证明不同功能梯度岩心对螺旋复合板抗爆炸性的影响。评估了从受保护结构下方提取的反作用力和临界应力。陀螺夹层结构清楚地展示了独特的动态破碎响应,冲击能量缓解和耗散机制,从而增强了抗爆炸性。这大大降低了计算成本。进行了一系列研究,以证明不同功能梯度岩心对螺旋复合板抗爆炸性的影响。评估了从受保护结构下方提取的反作用力和临界应力。陀螺夹层结构清楚地展示了独特的动态破碎响应,冲击能量缓解和耗散机制,从而增强了抗爆炸性。这大大降低了计算成本。进行了一系列研究,以证明不同功能梯度岩心对螺旋复合板抗爆炸性的影响。评估了从受保护结构下方提取的反作用力和临界应力。陀螺夹层结构清楚地展示了独特的动态破碎响应,冲击能量缓解和耗散机制,从而增强了抗爆炸性。

更新日期:2020-01-21
down
wechat
bug