当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrathin silicon oxide prepared by in-line plasma-assisted N2O oxidation (PANO) and the application for n-type polysilicon passivated contact
Solar Energy Materials and Solar Cells ( IF 6.3 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.solmat.2019.110389
Yuqing Huang , Mingdun Liao , Zhixue Wang , Xueqi Guo , Chunsheng Jiang , Qing Yang , Zhizhong Yuan , Dandan Huang , Jie Yang , Xinyu Zhang , Qi Wang , Hao Jin , Mowafak Al-Jassim , Chunhui Shou , Yuheng Zeng , Baojie Yan , Jichun Ye

Abstract We develop a plasma-assisted nitrous-oxide (N2O) gas oxidation (PANO) method to prepare the ultrathin silicon oxide (SiOx) for polysilicon (poly-Si) passivated contact. The effects of preparation conditions, including the substrate temperature, processing time, and plasma power, are studied. Afterwards, we integrate the PANO SiOx into the polysilicon passivated contact and optimize the passivation and contact performances. Excellent surface passivation with the n-type poly-Si and PANO SiOx on the n-type c-Si wafer is achieved by 880 °C annealing, which shows competitive passivation quality to the one with NASO SiOx. Champion implied open-circuit voltage (iVoc) and single-sided recombination saturated current (J0) reach 730 mV and 4.3 fA/cm2 after crystallization; and they are further improved to 747 mV and 2.0 fA/cm2 (3 × 1015cm−3) after subsequent AlOx/SiNx hydrogenation. Using transmission electron microscopy (TEM), we find that the thickness of PANO SiOx ranges 1.1–2.4 nm and the controlled nitric acid oxidized SiOx (NAOS) ranges 1.3–1.8 nm. The contact resistivity (ρc) is typically 820 °C. Also, the crystallinity, phosphorous in-diffusion profile, and current-leaking density of the passivated contacts are investigated. In general, the PANO SiOx and in-situ doping amorphous silicon precursor can be fabricated in one PECVD system without additional equipment or transfer procedures, which is favorable for the high-efficiency, low-cost industrial manufacture.

中文翻译:

在线等离子体辅助 N2O 氧化 (PANO) 制备的超薄氧化硅及其在 n 型多晶硅钝化触点中的应用

摘要 我们开发了一种等离子体辅助一氧化二氮 (N2O) 气体氧化 (PANO) 方法来制备用于多晶硅 (poly-Si) 钝化触点的超薄氧化硅 (SiOx)。研究了制备条件的影响,包括衬底温度、处理时间和等离子体功率。之后,我们将 PANO SiOx 集成到多晶硅钝化触点中并优化钝化和触点性能。通过 880°C 退火在 n 型 c-Si 晶片上使用 n 型多晶硅和 PANO SiOx 实现了出色的表面钝化,这显示出与 NASO SiOx 相比具有竞争力的钝化质量。Champion隐含开路电压(iVoc)和单面复合饱和电流(J0)结晶后达到730 mV和4.3 fA/cm2;它们进一步提高到 747 mV 和 2。0 fA/cm2 (3 × 1015cm−3) 在随后的 AlOx/SiNx 氢化之后。使用透射电子显微镜 (TEM),我们发现 PANO SiOx 的厚度范围为 1.1-2.4 nm,受控硝酸氧化 SiOx (NAOS) 的厚度范围为 1.3-1.8 nm。接触电阻 (ρc) 通常为 820 °C。此外,还研究了钝化触点的结晶度、磷扩散分布和电流泄漏密度。一般来说,PANO SiOx 和原位掺杂的非晶硅前驱体可以在一个 PECVD 系统中制备,无需额外的设备或转移程序,有利于高效、低成本的工业制造。4 nm 和受控硝酸氧化的 SiOx (NAOS) 范围为 1.3–1.8 nm。接触电阻 (ρc) 通常为 820 °C。此外,还研究了钝化触点的结晶度、磷扩散分布和漏电流密度。一般来说,PANO SiOx 和原位掺杂的非晶硅前驱体可以在一个 PECVD 系统中制造,无需额外的设备或转移程序,有利于高效、低成本的工业制造。4 nm 和受控硝酸氧化的 SiOx (NAOS) 范围为 1.3-1.8 nm。接触电阻 (ρc) 通常为 820 °C。此外,还研究了钝化触点的结晶度、磷扩散分布和漏电流密度。一般来说,PANO SiOx 和原位掺杂的非晶硅前驱体可以在一个 PECVD 系统中制造,无需额外的设备或转移程序,有利于高效、低成本的工业制造。
更新日期:2020-05-01
down
wechat
bug