当前位置: X-MOL 学术ChemCatChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Embedding Sulfur Atoms in Decahedron Bismuth Vanadate Crystals with a Soft Chemical Approach for Expanding the Light Absorption Range
ChemCatChem ( IF 3.8 ) Pub Date : 2020-02-11 , DOI: 10.1002/cctc.201901865
Yue Zhao 1, 2 , Taifeng Liu 3 , Ruotian Chen 1, 2 , Bin Zeng 1, 2 , Xiaoping Tao 1 , Jianming Li 4 , Xu Jin 4 , Rengui Li 1 , Can Li 1
Affiliation  

Bandgap engineering of semiconductors attracts great attention in the field of photocatalysis to enhance the conversion efficiency of semiconductors. Introducing impurity atoms, such as nitrogen, sulfur and metal atoms, into the crystal lattice of semiconductors is one of the commonly used methods to broaden the light absorption range. However, traditional methods to embed impurity atoms require harsh conditions like high temperatures, which will destroy the morphology‐tailored structure of semiconductors in many cases. Herein, we demonstrated a soft chemical approach, hydrothermal method, to expand the light absorption range by introducing sulfur atoms in the typical semiconductor bismuth vanadate (BiVO4). After embedding sulfur atoms, the light absorption edge of BiVO4 crystals can be expanded from 530 nm to more than 650 nm, while, the decahedron morphology with exposed {010} and {110} facets of BiVO4 crystals was still well‐maintained. The sulfur‐embedded BiVO4 crystals show photocurrent response even under longer wavelengths than 550 nm and also exhibit an evident enhancement than pristine BiVO4 in photoelectrochemical performances under visible light. Our work offers a strategy for manipulating the band structures of semiconductors for applications in solar energy conversion.

中文翻译:

用软化学方法将硫原子嵌入十面体钒酸铋晶体中以扩大光吸收范围

半导体的带隙工程在光催化领域引起极大的关注,以提高半导体的转换效率。在半导体的晶格中引入氮,硫和金属原子等杂质原子是扩大光吸收范围的常用方法之一。但是,传统的嵌入杂质原子的方法需要苛刻的条件,例如高温,这在许多情况下会破坏半导体的形态定制结构。在这里,我们展示了一种软化学方法,即水热法,通过在典型的半导体钒酸铋(BiVO 4)中引入硫原子来扩大光吸收范围。嵌入硫原子后,BiVO 4的光吸收边缘晶体可以从530 nm扩展到650 nm以上,而BiVO 4晶体暴露的{010}和{110}面的十面体形态仍然保持良好。嵌入硫的BiVO 4晶体即使在比550 nm长的波长下也显示出光电流响应,并且在可见光下的光电化学性能也比原始BiVO 4明显增强。我们的工作为操纵用于太阳能转换的半导体的能带结构提供了一种策略。
更新日期:2020-02-11
down
wechat
bug