当前位置: X-MOL 学术Front. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Key Transitions in the Evolution of Rapid and Slow Growing Mycobacteria Identified by Comparative Genomics.
Frontiers in Microbiology ( IF 4.0 ) Pub Date : 2020-01-21 , DOI: 10.3389/fmicb.2019.03019
Nathan L Bachmann 1, 2 , Rauf Salamzade 3 , Abigail L Manson 3 , Richard Whittington 2, 4 , Vitali Sintchenko 1, 2 , Ashlee M Earl 3 , Ben J Marais 2
Affiliation  

Mycobacteria have been classified into rapid and slow growing phenotypes, but the genetic factors that underlie these growth rate differences are not well understood. We compared the genomes of 157 mycobacterial species, representing all major branches of the mycobacterial phylogenetic tree to identify genes and operons enriched among rapid and slow growing mycobacteria. Overlaying growth phenotype on a phylogenetic tree based on 304 core genes suggested that ancestral mycobacteria had a rapid growth phenotype with a single major evolutionary separation into rapid and slow growing sub-genera. We identified 293 genes enriched among rapid growing sub-genera, including genes encoding for amino acid transport/metabolism (e.g., livFGMH operon) and transcription, as well as novel ABC transporters. Loss of the livFGMH and ABC transporter operons among slow growing species suggests that reduced cellular amino acid transport may be growth limiting. Comparative genomic analysis suggests that horizontal gene transfer, from non-mycobacterial genera, may have contributed to niche adaptation and pathogenicity, especially among slow growing species. Interestingly, the mammalian cell entry (mce) operon was found to be ubiquitous, irrespective of growth phenotype or pathogenicity, although protein sequence homology between rapid and slow growing species was low (<50%). This suggests that the mce operon was present in ancestral rapid growing species, but later adapted by slow growing species for use as a mechanism to establish an intra-cellular lifestyle.

中文翻译:

比较基因组学确定了快速和缓慢增长的分枝杆菌进化中的关键转变。

分枝杆菌已被分类为快速和慢速生长的表型,但这些生长速率差异背后的遗传因素尚不十分清楚。我们比较了代表分枝杆菌系统发育树的所有主要分支的157个分枝杆菌物种的基因组,以鉴定在快速和慢速分枝杆菌中富集的基因和操纵子。在基于304个核心基因的系统树上叠加的生长表型表明,祖先的分枝杆菌具有快速的生长表型,只有一个主要的进化分离,可以分为快速和慢速的亚属。我们确定了在快速增长的亚属中富集的293个基因,包括编码氨基酸转运/代谢(例如livFGMH操纵子)和转录的基因,以及新型ABC转运蛋白。在慢速生长的物种中,livFGMH和ABC转运蛋白操纵子的丢失表明减少的细胞氨基酸转运可能是生长的限制。比较基因组分析表明,来自非分枝杆菌属的水平基因转移可能有助于生态位适应和致病性,特别是在缓慢生长的物种中。有趣的是,尽管快速和慢速生长物种之间的蛋白质序列同源性较低(<50%),但发现哺乳动物细胞进入(mce)操纵子无处不在,而与生长表型或致病性无关。这表明mce操纵子存在于祖先快速生长的物种中,但后来被慢速生长的物种适应以用作建立细胞内生活方式的机制。比较基因组分析表明,来自非分枝杆菌属的水平基因转移可能有助于生态位适应和致病性,特别是在缓慢生长的物种中。有趣的是,尽管快速和慢速生长物种之间的蛋白质序列同源性较低(<50%),但发现哺乳动物细胞进入(mce)操纵子无处不在,而与生长表型或致病性无关。这表明mce操纵子存在于祖先快速生长的物种中,但后来被慢速生长的物种适应以用作建立细胞内生活方式的机制。比较基因组分析表明,来自非分枝杆菌属的水平基因转移可能有助于生态位适应和致病性,特别是在缓慢生长的物种中。有趣的是,尽管快速和慢速生长物种之间的蛋白质序列同源性较低(<50%),但发现哺乳动物细胞进入(mce)操纵子无处不在,而与生长表型或致病性无关。这表明mce操纵子存在于祖先快速生长的物种中,但后来被慢速生长的物种适应以用作建立细胞内生活方式的机制。尽管快速和慢速生长物种之间的蛋白质序列同源性较低(<50%),但发现哺乳动物细胞进入(mce)操纵子无处不在,而与生长表型或致病性无关。这表明mce操纵子存在于祖先快速生长的物种中,但后来被慢速生长的物种适应以用作建立细胞内生活方式的机制。尽管快速和慢速生长物种之间的蛋白质序列同源性很低(<50%),但发现哺乳动物细胞进入(mce)操纵子无处不在,而与生长表型或致病性无关。这表明mce操纵子存在于祖先快速生长的物种中,但后来被慢速生长的物种适应以用作建立细胞内生活方式的机制。
更新日期:2020-01-21
down
wechat
bug