当前位置: X-MOL 学术Nano Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emerging wet electrohydrodynamic approaches for versatile bioactive 3D interfaces
Nano Research ( IF 9.5 ) Pub Date : 2020-01-18 , DOI: 10.1007/s12274-020-2635-x
Mehmet Berat Taskin , Lasse Hyldgaard Klausen , Mingdong Dong , Menglin Chen

Abstract

There is a compelling need for delicate nanomaterial design with various intricate functions and applications. Electrohydrodynamics applies electrostatic force to overcome the surface tension of a. liquid jet, shrinking the jet through intrinsic jetting instability into submicron fibers or spheres, with versatility from a. huge selection of materials, feasibility of extracellular matrix structure mimicry and multi-compartmentalization for tissue engineering and drug delivery. The process typically involves the collection and drying of fibers at a. solid substrate, but the introduction of a. liquid phase collection by replacing the solid collector with a. coagulation bath can introduce a. variety of new opportunities for both chemical and physical functionalizations in one single step. The so-called wet electrohydrodynamics is an emerging technique that enables a. facile, homogeneous functionalization of the intrinsic large surface area of the submicron fibers/spheres. With a. thorough literature sweep, we herein highlight the three main engineering features integrated through the single step wet electrospinning process in terms of creating functional biomaterials: (i) The fabrication of 3D macrostructures, (ii) in situ chemical functionalization, and (iii) tunable nano-topography. Through an emerging technique, wet electrohydrodynamics has demonstrated a. great potential in interdisciplinary research for the development of functional 3D interfaces and materials with pertinent applications in all fields where secondary structured, functional surface is desired. Among these, engineered biomaterials bridging materials science with biology have already shown particular potential.



中文翻译:

用于多功能生物活性3D界面的新兴湿式电动流体动力学方法

摘要

迫切需要具有各种复杂功能和应用的精细纳米材料设计。电动流体力学施加静电力以克服a的表面张力。液体射流,通过固有的射流不稳定性将射流收缩成亚微米纤维或球体,具有多种用途。大量的材料选择,细胞外基质结构模拟的可行性以及用于组织工程和药物递送的多隔室化。该过程通常包括在一个温度下收集和干燥纤维。固体基质,但引入一种。通过用a代替固体收集器进行液相收集。混凝浴可以引入一个。一步实现化学和物理功能化的各种新机会。所谓的湿式电动流体动力学是一种新兴的技术,它能够实现。亚微米纤维/球的固有大表面积的简便,均匀的功能化。用。在深入的文献研究中,我们在此重点介绍了通过单步湿式静电纺丝工艺在创建功能性生物材料方面的三个主要工程特征:(i)3D宏观结构的制造,(ii)原位化学功能化,以及(iii)可调纳米形貌。通过新兴技术,湿式电动流体动力学已经证明了。跨学科研究在功能性3D界面和材料开发方面具有巨大潜力,并且在需要二级结构化,功能性表面的所有领域都有相关应用。其中,工程生物材料将材料科学与生物学联系起来已经显示出特殊的潜力。

更新日期:2020-01-21
down
wechat
bug