当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells
Science ( IF 44.7 ) Pub Date : 2020-01-16 , DOI: 10.1126/science.aaz5357
David P Hoffman 1 , Gleb Shtengel 1 , C Shan Xu 1 , Kirby R Campbell 2 , Melanie Freeman 1 , Lei Wang 3, 4, 5 , Daniel E Milkie 1 , H Amalia Pasolli 1 , Nirmala Iyer 1 , John A Bogovic 1 , Daniel R Stabley 6 , Abbas Shirinifard 7 , Song Pang 1 , David Peale 1 , Kathy Schaefer 1 , Wim Pomp 3, 4, 5 , Chi-Lun Chang 1 , Jennifer Lippincott-Schwartz 1 , Tom Kirchhausen 1, 3, 4, 5 , David J Solecki 2 , Eric Betzig 1, 8, 9, 10, 11, 12 , Harald F Hess 1
Affiliation  

Visualizing whole cells at many scales Cells need to compartmentalize thousands of distinct proteins, but the nanoscale spatial relationship of many proteins to overall intracellular ultrastructure remains poorly understood. Correlated light and electron microscopy approaches can help. Hoffman et al. combined cryogenic super-resolution fluorescence microscopy and focused ion beam–milling scanning electron microscopy to visualize protein-ultrastructure relationships in three dimensions across whole cells. The fusion of the two imaging modalities enabled identification and three-dimensional segmentation of morphologically complex structures within the crowded intracellular environment. The researchers observed unexpected relationships within a variety of cell types, including a web-like protein adhesion network between juxtaposed cerebellar granule neurons. Science, this issue p. eaaz5357 Cryogenic super-resolution fluorescence and electron microscopy reveals protein-ultrastructure relationships in whole cells. INTRODUCTION Our textbook understanding of the nanoscale organization of the cell and its relationship to the thousands of proteins that drive cellular metabolism comes largely from a synthesis of biochemistry, molecular biology, and electron microscopy, and is therefore speculative in its details. Correlative super-resolution (SR) fluorescence and electron microscopy (EM) promises to elucidate these details by directly visualizing the nanoscale relationship of specific proteins in the context of the global cellular ultrastructure. However, to date such correlative imaging has involved compromises with respect to ultrastructure preservation and imaging sensitivity, resolution, and/or field of view. RATIONALE We developed a pipeline to (i) preserve fluorescently labeled, cultured mammalian cells in vitreous ice; (ii) image selected cells in their entirety below 10 K by multicolor three-dimensional structured illumination (3D SIM) and single-molecule localization microscopy (SMLM); (iii) image the same cells by 3D focused ion beam scanning EM (FIB-SEM) at 4- or 8-nm isotropic resolution; and (iv) register all image volumes to nanoscale precision. The pipeline ensures accurate ultrastructure preservation, permits independent optimization of SR and EM imaging modalities, and provides a comprehensive view of how specific subcellular components vary across the cellular volume. RESULTS Nearly every system we studied revealed unexpected results: intranuclear vesicles positive for a marker of the endoplasmic reticulum; peroxisomes of increasingly irregular morphology with increasing size; endolysosomal compartments of exceptionally diverse and convoluted morphology; a web-like adhesion network between cerebellar granule neurons; and classically EM-defined domains of heterochromatin and euchromatin each sub-characterized by the presence or absence of markers of transcriptional activity. Two-color cryo-SMLM enabled whole-cell image registration quantifiable down to ~40 nm accuracy. Cryo-SIM, even with its lower resolution, enabled unique discrimination between vesicles of like morphology and aided in segmenting complex 3D structures at FIB-SEM resolution within the crowded intracellular milieu. CONCLUSION Our pipeline serves as a powerful hypothesis generator to better understand the findings of biochemistry in the context of the spatially compartmentalized cell. Our approach also carefully preserves the native ultrastructure upon which such hypotheses are based, thus enabling cell-wide or cell-to-cell investigation of the natural variability in protein-ultrastructure relationships. Whole-cell correlative imaging. Cryogenic super-resolution fluorescence microscopy of high-pressure frozen cells coupled with focused ion beam scanning electron microscopy (FIB-SEM) enables multicolor three-dimensional nanoscale visualization of proteins in the context of global ultrastructure. Clockwise from upper left: Volume-rendered cell with correlated orthoslice (inset) of mitochondria and endoplasmic reticulum (ER) proteins; endolysosomal compartments of diverse morphology; heterochomatin subdomains defined by protein reporters of transcriptional activity; adhesion proteins correlated to membrane roughness at contacting cerebellar granule neurons; and a peroxisome (pink) juxtaposed to an ER sheet (red) and mitochondrion (cyan). Within cells, the spatial compartmentalization of thousands of distinct proteins serves a multitude of diverse biochemical needs. Correlative super-resolution (SR) fluorescence and electron microscopy (EM) can elucidate protein spatial relationships to global ultrastructure, but has suffered from tradeoffs of structure preservation, fluorescence retention, resolution, and field of view. We developed a platform for three-dimensional cryogenic SR and focused ion beam–milled block-face EM across entire vitreously frozen cells. The approach preserves ultrastructure while enabling independent SR and EM workflow optimization. We discovered unexpected protein-ultrastructure relationships in mammalian cells including intranuclear vesicles containing endoplasmic reticulum–associated proteins, web-like adhesions between cultured neurons, and chromatin domains subclassified on the basis of transcriptional activity. Our findings illustrate the value of a comprehensive multimodal view of ultrastructural variability across whole cells.

中文翻译:

全玻璃体冷冻细胞的相关三维超分辨率和块面电子显微镜

在多个尺度上可视化整个细胞细胞需要划分数千种不同的蛋白质,但许多蛋白质与整体细胞内超微结构的纳米级空间关系仍然知之甚少。相关的光学和电子显微镜方法可以提供帮助。霍夫曼等人。结合低温超分辨率荧光显微镜和聚焦离子束铣削扫描电子显微镜,在整个细胞的三个维度上可视化蛋白质-超微结构关系。两种成像方式的融合使得能够在拥挤的细胞内环境中对形态复杂的结构进行识别和三维分割。研究人员观察到多种细胞类型之间存在意想不到的关系,包括并列的小脑颗粒神经元之间的网状蛋白质粘附网络。科学,本期第 14 页。eaaz5357 低温超分辨率荧光和电子显微镜揭示了全细胞中蛋白质-超微结构的关系。引言 我们的教科书对细胞的纳米级组织及其与驱动细胞代谢的数千种蛋白质的关系的理解主要来自生物化学、分子生物学和电子显微镜的综合,因此其细节是推测性的。相关超分辨率(SR)荧光和电子显微镜(EM)有望通过直接可视化整体细胞超微结构背景下特定蛋白质的纳米级关系来阐明这些细节。然而,迄今为止,这种相关成像涉及超微结构保存和成像灵敏度、分辨率和/或视场方面的折衷。基本原理我们开发了一种管道,以(i)在玻璃冰中保存荧光标记的培养哺乳动物细胞;(ii) 通过多色三维结构照明 (3D SIM) 和单分子定位显微镜 (SMLM) 在 10 K 以下对所选细胞进行整体成像;(iii) 通过 3D 聚焦离子束扫描 EM (FIB-SEM) 以 4 或 8 nm 各向同性分辨率对相同细胞进行成像;(iv) 将所有图像体积配准至纳米级精度。该流程确保准确的超微结构保存,允许独立优化 SR 和 EM 成像模式,并提供特定亚细胞成分在细胞体积中如何变化的全面视图。结果我们研究的几乎每个系统都揭示了意想不到的结果:核内囊泡对内质网标记物呈阳性;过氧化物酶体的形态随着尺寸的增加而变得越来越不规则;形态极其多样且复杂的内溶酶体区室;小脑颗粒神经元之间的网状粘附网络;以及经典的 EM 定义的异染色质和常染色质结构域,每个结构域的亚特征都是存在或不存在转录活性标记。双色冷冻 SMLM 使全细胞图像配准可量化至约 40 nm 的精度。Cryo-SIM 即使分辨率较低,也能够对相似形态的囊泡进行独特区分,并有助于在拥挤的细胞内环境中以 FIB-SEM 分辨率分割复杂的 3D 结构。结论我们的流程作为一个强大的假设生成器,可以更好地理解空间分区细胞背景下的生物化学发现。我们的方法还仔细保留了此类假设所依据的天然超微结构,从而能够对蛋白质超微结构关系的自然变异性进行细胞范围或细胞间的研究。全细胞相关成像。高压冷冻细胞的低温超分辨率荧光显微镜与聚焦离子束扫描电子显微镜(FIB-SEM)相结合,可以在整体超微结构的背景下对蛋白质进行多色三维纳米级可视化。从左上角顺时针方向:具有线粒体和内质网 (ER) 蛋白相关正位切片(插图)的体积渲染细胞;不同形态的溶酶体区室;由转录活性蛋白报告基因定义的异染色质亚结构域;粘附蛋白与接触小脑颗粒神经元的膜粗糙度相关;以及与 ER 片(红色)和线粒体(青色)并置的过氧化物酶体(粉色)。在细胞内,数千种不同蛋白质的空间划分满足多种不同的生化需求。相关超分辨率(SR)荧光和电子显微镜(EM)可以阐明蛋白质与整体超微结构的空间关系,但受到结构保存、荧光保留、分辨率和视野的权衡。我们开发了一个平台,用于在整个玻璃体冷冻细胞上进行三维低温 SR 和聚焦离子束铣削块面 EM。该方法保留超微结构,同时实现独立的 SR 和 EM 工作流程优化。我们在哺乳动物细胞中发现了意想不到的蛋白质-超微结构关系,包括含有内质网相关蛋白的核内囊泡、培养神经元之间的网状粘附以及根据转录活性细分的染色质结构域。我们的研究结果说明了全细胞超微结构变异的综合多模式视图的价值。我们的方法还仔细保留了此类假设所依据的天然超微结构,从而能够对蛋白质超微结构关系的自然变异性进行细胞范围或细胞间的研究。全细胞相关成像。高压冷冻细胞的低温超分辨率荧光显微镜与聚焦离子束扫描电子显微镜(FIB-SEM)相结合,可以在整体超微结构的背景下对蛋白质进行多色三维纳米级可视化。从左上角顺时针方向:具有线粒体和内质网 (ER) 蛋白相关正位切片(插图)的体积渲染细胞;不同形态的溶酶体区室;由转录活性蛋白报告基因定义的异染色质亚结构域;粘附蛋白与接触小脑颗粒神经元的膜粗糙度相关;以及与 ER 片(红色)和线粒体(青色)并置的过氧化物酶体(粉色)。在细胞内,数千种不同蛋白质的空间划分满足多种不同的生化需求。相关超分辨率(SR)荧光和电子显微镜(EM)可以阐明蛋白质与整体超微结构的空间关系,但受到结构保存、荧光保留、分辨率和视野的权衡。我们开发了一个平台,用于在整个玻璃体冷冻细胞上进行三维低温 SR 和聚焦离子束铣削块面 EM。该方法保留超微结构,同时实现独立的 SR 和 EM 工作流程优化。我们在哺乳动物细胞中发现了意想不到的蛋白质-超微结构关系,包括含有内质网相关蛋白的核内囊泡、培养神经元之间的网状粘附以及根据转录活性细分的染色质结构域。我们的研究结果说明了全细胞超微结构变异的综合多模式视图的价值。我们的方法还仔细保留了此类假设所依据的天然超微结构,从而能够对蛋白质超微结构关系的自然变异性进行细胞范围或细胞间的研究。全细胞相关成像。高压冷冻细胞的低温超分辨率荧光显微镜与聚焦离子束扫描电子显微镜(FIB-SEM)相结合,可以在整体超微结构的背景下对蛋白质进行多色三维纳米级可视化。从左上角顺时针方向:具有线粒体和内质网 (ER) 蛋白相关正位切片(插图)的体积渲染细胞;不同形态的溶酶体区室;由转录活性蛋白报告基因定义的异染色质亚结构域;粘附蛋白与接触小脑颗粒神经元的膜粗糙度相关;以及与 ER 片(红色)和线粒体(青色)并置的过氧化物酶体(粉色)。在细胞内,数千种不同蛋白质的空间划分满足多种不同的生化需求。相关超分辨率(SR)荧光和电子显微镜(EM)可以阐明蛋白质与整体超微结构的空间关系,但受到结构保存、荧光保留、分辨率和视野的权衡。我们开发了一个平台,用于在整个玻璃体冷冻细胞上进行三维低温 SR 和聚焦离子束铣削块面 EM。该方法保留超微结构,同时实现独立的 SR 和 EM 工作流程优化。我们在哺乳动物细胞中发现了意想不到的蛋白质-超微结构关系,包括含有内质网相关蛋白的核内囊泡、培养神经元之间的网状粘附以及根据转录活性细分的染色质结构域。我们的研究结果说明了全细胞超微结构变异的综合多模式视图的价值。数千种不同蛋白质的空间划分满足了多种不同的生化需求。相关超分辨率(SR)荧光和电子显微镜(EM)可以阐明蛋白质与整体超微结构的空间关系,但受到结构保存、荧光保留、分辨率和视野的权衡。我们开发了一个平台,用于在整个玻璃体冷冻细胞上进行三维低温 SR 和聚焦离子束铣削块面 EM。该方法保留超微结构,同时实现独立的 SR 和 EM 工作流程优化。我们在哺乳动物细胞中发现了意想不到的蛋白质-超微结构关系,包括含有内质网相关蛋白的核内囊泡、培养神经元之间的网状粘附以及根据转录活性细分的染色质结构域。我们的研究结果说明了全细胞超微结构变异的综合多模式视图的价值。数千种不同蛋白质的空间划分满足了多种不同的生化需求。相关超分辨率(SR)荧光和电子显微镜(EM)可以阐明蛋白质与整体超微结构的空间关系,但受到结构保存、荧光保留、分辨率和视野的权衡。我们开发了一个平台,用于在整个玻璃体冷冻细胞上进行三维低温 SR 和聚焦离子束铣削块面 EM。该方法保留超微结构,同时实现独立的 SR 和 EM 工作流程优化。我们在哺乳动物细胞中发现了意想不到的蛋白质-超微结构关系,包括含有内质网相关蛋白的核内囊泡、培养神经元之间的网状粘附以及根据转录活性细分的染色质结构域。我们的研究结果说明了全细胞超微结构变异的综合多模式视图的价值。
更新日期:2020-01-16
down
wechat
bug