当前位置: X-MOL 学术Int. J. Refract. Met. Hard Mater. › 论文详情
Effect of micro-blasting on the tribological properties of TiN/MT-TiCN/Al2O3/TiCNO coatings deposited by CVD
International Journal of Refractory Metals & Hard Materials ( IF 2.794 ) Pub Date : 2020-01-16 , DOI: 10.1016/j.ijrmhm.2020.105205
Tongwei Shen; Lihui Zhu; Zhenyu Liu

The effect of micro-blasting on the tribological properties of TiN/MT-TiCN/Al2O3/TiCNO coatings was studied. The multilayer coatings were deposited on cemented carbides by chemical vapor deposition. The microstructure, mechanical and tribological properties were investigated using X-ray diffraction, scanning electron microscopy (SEM), nano-mechanical testing system, scratch tester and reciprocating tribometer. The results show that micro-blasting significantly reduces the surface roughness and converts the residual tensile stress of Ti(C,N,O) top-layer and Al2O3 layer into compressive stress. Affected by the residual compressive stress, the hardness and adhesion strength are increased. More importantly, the friction coefficient is decreased attributed to the decreased surface roughness and improved hardness. Also, the wear resistance of micro-blasted TiN/MT-TiCN/Al2O3/TiCNO is superior due to higher hardness of Ti(C,N,O) top-layer, Al2O3 layer and adhesion strength of coatings. Especially for the total sliding time of 2 h, the wear volume and wear rate of micro-blasted coatings are 69.4% of as-deposited coatings, because micro-blasting helps to increase the adhesion strength and micro-cracking resistance, which play important roles in the improvement of wear resistance. Micro-blasting has a positive effect on the friction and wear properties of TiN/MT-TiCN/Al2O3/TiCNO multilayer coatings since the adverse impact of top-layer thinning is offset.
更新日期:2020-01-17

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug