当前位置: X-MOL 学术Surf. Coat. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The incorporation of particles suspended in the electrolyte into plasma electrolytic oxidation coatings on Ti and Al substrates
Surface & Coatings Technology ( IF 5.3 ) Pub Date : 2020-01-17 , DOI: 10.1016/j.surfcoat.2020.125354
M. O'Hara , S.C. Troughton , R. Francis , T.W. Clyne

This investigation concerns the mechanisms by which (fine) particles become incorporated into plasma electrolytic oxidation (PEO) coatings when added to the electrolyte. Three different types of particle have been used, covering a wide size range, and processing has been carried out with both Al and Ti substrates. For some of these combinations, the particulate was chemically similar to the expected PEO product, while for others it was different. The power supply was 50 Hz AC, with a pre-selected current density. It has been established that, where such reactions are chemically favoured, phase changes can occur that must have involved the particulate reaching very high temperatures. From this and other evidence, it is concluded that the main incorporation mechanism involved is that of (fine) particulate being swept into the pores associated with active discharge sites, while they are being refilled with electrolyte immediately after collapse of the plasma. They are then likely to become entrapped, and in many cases to be strongly heated as the plasma is created during the next discharge cycle. Typical pore sizes are such that particles (or particulate clusters) above about 10 μm in size would be unlikely to enter them. While particles a few microns in diameter can become incorporated, it takes place more readily with sub-micron particles. It is also concluded that electrophoretic forces are unlikely to play any significant role in the incorporation process.



中文翻译:

将悬浮在电解质中的颗粒结合到Ti和Al基体上的等离子电解氧化涂层中

这项研究涉及的机理是,当将细颗粒添加到电解质中时,细颗粒会掺入等离子体电解氧化(PEO)涂层中。已经使用了三种不同类型的颗粒,覆盖了较大的尺寸范围,并且已经对Al和Ti衬底进行了处理。对于其中的某些组合,颗粒在化学上与预期的PEO产品相似,而对于其他组合,则不同。电源为50 Hz AC,具有预先选择的电流密度。已经确定的是,在化学上有利于这种反应的地方,可能发生相变,该相变必须已经使颗粒达到非常高的温度。从这个和其他证据来看,得出的结论是,所涉及的主要掺入机制是将(细)颗粒扫入与活性放电位点相关的孔中,而在等离子崩溃后立即用电解质重新填充它们。然后,它们可能会被截留,并且在许多情况下,由于在下一个放电周期中产生等离子体,强烈地加热了它们。典型的孔径应使粒径大于10μm的颗粒(或颗粒团)不大可能进入其中。虽然可以掺入直径为几微米的颗粒,但使用亚微米颗粒更容易发生。还得出结论,电泳力不太可能在结合过程中发挥任何重要作用。在等离子崩溃后立即重新填充电解质。然后,它们可能会被截留,并且在许多情况下,由于在下一个放电周期中产生等离子体,强烈地加热了它们。典型的孔径应使粒径大于10μm的颗粒(或颗粒团)不大可能进入其中。虽然可以掺入直径为几微米的颗粒,但使用亚微米颗粒更容易发生。还得出结论,电泳力不太可能在结合过程中发挥任何重要作用。在等离子崩溃后立即重新填充电解质。然后,它们可能会被截留,并且在许多情况下,由于在下一个放电周期中产生等离子体,强烈地加热了它们。典型的孔径应使粒径大于10μm的颗粒(或颗粒团)不大可能进入其中。虽然可以掺入直径为几微米的颗粒,但使用亚微米颗粒更容易发生。还得出结论,电泳力不太可能在结合过程中发挥任何重要作用。典型的孔径应使粒径大于10μm的颗粒(或颗粒团)不大可能进入其中。虽然可以掺入直径为几微米的颗粒,但使用亚微米颗粒更容易发生。还得出结论,电泳力不太可能在结合过程中发挥任何重要作用。典型的孔径应使粒径大于10μm的颗粒(或颗粒簇)不大可能进入其中。虽然可以掺入直径为几微米的颗粒,但使用亚微米颗粒更容易发生。还得出结论,电泳力不太可能在结合过程中发挥任何重要作用。

更新日期:2020-01-17
down
wechat
bug