当前位置: X-MOL 学术J. Magn. Magn. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Loss decomposition in plastically deformed and partially annealed steel sheets
Journal of Magnetism and Magnetic Materials ( IF 2.5 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.jmmm.2020.166452
F.J.G. Landgraf , C. Ragusa , D. Luiz Rodrigues , M.B.S. Dias , O. de la Barrière , F. Mazaleyrat , F. Fiorillo , C. Appino , L. Martino

Abstract There is increasing interest in the optimization of non-oriented electrical steels for applications under excitation frequencies above 400 Hz. We discuss in this paper the possibility of a new manufacturing procedure, where skin-pass and subsequent heat treatment for recovery are applied as the two last stages of sheet processing. Samples from a commercial non-oriented 3 wt% silicon steel were submitted to 2.5% thickness reduction and were heat treated at temperatures ranging between 600 and 850 °C for 2 h. It is shown that, although the hysteresis loss increases with plastic deformation, the excess loss decreases in such a way that under increasing magnetizing frequencies the total energy loss of the deformed and recovered sample becomes lower than in the starting material. The higher the annealing temperature the lower the frequency at which crossover of the loss curves is observed, as long as full recrystallization does not occur. It is assumed that with the dislocation structures left in the deformed and partially recovered samples one achieves a condition of increased fragmentation of the magnetization process, that is, of increased number of concurring correlation regions (Magnetic Objects). The corresponding decrease of the excess loss component can eventually overcompensate the deterioration of the quasi-static magnetic properties, leading to lower total losses.

中文翻译:

塑性变形和部分退火钢板的损失分解

摘要 对于在高于 400 Hz 的激励频率下应用的无取向电工钢的优化越来越感兴趣。我们在本文中讨论了一种新制造程序的可能性,在该程序中,将表面平整和随后的恢复热处理用作板材加工的最后两个阶段。来自商用无取向 3 wt% 硅钢的样品进行 2.5% 的厚度缩减,并在 600 至 850 °C 的温度范围内热处理 2 小时。结果表明,虽然磁滞损耗随着塑性变形而增加,但过量损耗会以这样的方式降低,即在磁化频率增加的情况下,变形和恢复样品的总能量损失变得低于起始材料。只要不发生完全再结晶,退火温度越高,观察到损耗曲线交叉的频率越低。假设随着位错结构留在变形和部分恢复的样品中,人们实现了磁化过程碎裂增加的条件,即同时相关区域(磁性对象)的数量增加。超额损耗分量的相应减少最终可以过度补偿准静态磁性能的劣化,从而降低总损耗。假设随着位错结构留在变形和部分恢复的样品中,人们实现了磁化过程碎裂增加的条件,即同时相关区域(磁性对象)的数量增加。额外损耗分量的相应减少最终可以过度补偿准静态磁性能的劣化,从而导致总损耗降低。假设随着位错结构留在变形和部分恢复的样品中,人们实现了磁化过程碎裂增加的条件,即同时相关区域(磁性对象)的数量增加。超额损耗分量的相应减少最终可以过度补偿准静态磁性能的劣化,从而降低总损耗。
更新日期:2020-05-01
down
wechat
bug