当前位置: X-MOL 学术Ind. Eng. Chem. Res. › 论文详情
Optimization of Multilayer Standby Mechanisms in Continuous Chemical Processes
Industrial & Engineering Chemistry Research ( IF 3.375 ) Pub Date : 2020-01-27 , DOI: 10.1021/acs.iecr.0c00233
Sing-Zhi Chan; Hung-Yu Liu; Yi-Kai Luo; Chuei-Tin Chang

Every critical online unit in a continuous process must always function normally, and one or more identical units are usually put on standby to sustain the uninterrupted operation. Although a few related studies have been reported in the literature, a comprehensive analysis of the standby mechanism still has not been carried out. The objective of this research is to construct a generalized mathematical model to synthesize the multilayer standby mechanisms for any given processes by minimizing the total expected life cycle expenditure. A Matlab code can be developed accordingly to perform the required optimization tasks via a genetic algorithm. The feasibility and effectiveness of the proposed approach have been demonstrated with the case studies concerning the pump system in a typical chemical plant. From the optimization results, one can obtain the optimal design specifications of the multilayer standby mechanism, which include (1) the number of layers, (2) the numbers of both online and spare sensors in each measurement channel, (3) the corresponding voting-gate logic in each channel, (4) the inspection interval of a switch, (5) the number of spares for a switch, (6) the inspection intervals for warm standbys, and (7) the number of cold standbys.
更新日期:2020-01-27

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug