当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
Linear Codes From Perfect Nonlinear Functions Over Finite Fields
IEEE Transactions on Communications ( IF 5.646 ) Pub Date : 2019-11-14 , DOI: 10.1109/tcomm.2019.2953674
Yanan Wu; Nian Li; Xiangyong Zeng

In this paper, a class of $p$ -ary 3-weight linear codes and a class of binary 2-weight linear codes are proposed respectively by virtue of the properties of the perfect nonlinear functions over $\mathbb {F}_{p^{m}}$ and $(m,s)$ -bent functions from $\mathbb {F}_{2^{m}}$ to $\mathbb {F}_{2^{s}}$ , where $p$ is an odd prime and $m, s$ are positive integers. The weight distributions are completely determined by the sign of the Walsh transform of weakly regular bent functions and the size of the preimage of the employed $(m,s)$ -bent functions at the zero point, respectively. As a special case, a class of optimal linear codes meeting Griesmer bound is obtained from our construction.
更新日期:2020-01-17

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug