当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
AI Coding: Learning to Construct Error Correction Codes
IEEE Transactions on Communications ( IF 5.690 ) Pub Date : 2019-11-04 , DOI: 10.1109/tcomm.2019.2951403
Lingchen Huang; Huazi Zhang; Rong Li; Yiqun Ge; Jun Wang

In this paper, we investigate an artificial-intelligence (AI) driven approach to design error correction codes (ECC). Classic error-correction code design based upon coding-theoretic principles typically strives to optimize some performance-related code property such as minimum Hamming distance, decoding threshold, or subchannel reliability ordering. In contrast, AI-driven approaches, such as reinforcement learning (RL) and genetic algorithms, rely primarily on optimization methods to learn the parameters of an optimal code within a certain code family. We employ a constructor-evaluator framework, in which the code constructor can be realized by various AI algorithms and the code evaluator provides code performance metric measurements. The code constructor keeps improving the code construction to maximize code performance that is evaluated by the code evaluator. As examples, we focus on RL and genetic algorithms to construct linear block codes and polar codes. The results show that comparable code performance can be achieved with respect to the existing codes. It is noteworthy that our method can provide superior performances to classic constructions in certain cases (e.g., list decoding for polar codes).
更新日期:2020-01-17

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug