当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
AI Coding: Learning to Construct Error Correction Codes
IEEE Transactions on Communications ( IF 5.646 ) Pub Date : 2019-11-04 , DOI: 10.1109/tcomm.2019.2951403
Lingchen Huang; Huazi Zhang; Rong Li; Yiqun Ge; Jun Wang

In this paper, we investigate an artificial-intelligence (AI) driven approach to design error correction codes (ECC). Classic error-correction code design based upon coding-theoretic principles typically strives to optimize some performance-related code property such as minimum Hamming distance, decoding threshold, or subchannel reliability ordering. In contrast, AI-driven approaches, such as reinforcement learning (RL) and genetic algorithms, rely primarily on optimization methods to learn the parameters of an optimal code within a certain code family. We employ a constructor-evaluator framework, in which the code constructor can be realized by various AI algorithms and the code evaluator provides code performance metric measurements. The code constructor keeps improving the code construction to maximize code performance that is evaluated by the code evaluator. As examples, we focus on RL and genetic algorithms to construct linear block codes and polar codes. The results show that comparable code performance can be achieved with respect to the existing codes. It is noteworthy that our method can provide superior performances to classic constructions in certain cases (e.g., list decoding for polar codes).
更新日期:2020-01-17

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug