当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
Pilot Assisted Adaptive Thresholding for Sneak-Path Mitigation in Resistive Memories With Failed Selection Devices
IEEE Transactions on Communications ( IF 5.690 ) Pub Date : 2019-10-18 , DOI: 10.1109/tcomm.2019.2948332
Zehui Chen; Clayton Schoeny; Lara Dolecek

Resistive random-access memory (ReRAM) with the crossbar structure is one promising candidate to be used as a next generation non-volatile memory device. In a crossbar ReRAM, in which a memristor is positioned on each row-column intersection, the sneak-path problem is one of the main challenges for a reliable readout. The sneak-path problem can be solved with additional selection devices. When some selection devices fail short, the sneak-path problem re-occurs. The re-occurred sneak-path problem is addressed in this paper. The re-occurred sneak-path event can be described combinatorially and its adverse effect can be modeled as a parallel interference. Based on a simple pilot construction, we probabilistically characterize the inter-cell dependency of the re-occurred sneak-path events. Utilizing this dependency, we propose adaptive thresholding schemes for resistive memory readout using side information provided by pilot cells. This estimation theoretic approach effectively reduces the bit-error rate while maintaining low redundancy overhead and low complexity.
更新日期:2020-01-17

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug