当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards Massive MIMO 2.0: Understanding spatial correlation, interference suppression, and pilot contamination
IEEE Transactions on Communications ( IF 7.2 ) Pub Date : 2020-01-01 , DOI: 10.1109/tcomm.2019.2945792
Luca Sanguinetti , Emil Bjornson , Jakob Hoydis

Since the seminal paper by Marzetta from 2010, Massive MIMO has changed from being a theoretical concept with an infinite number of antennas to a practical technology. The key concepts are adopted into the 5G New Radio Standard and base stations (BSs) with $M=64$ fully digital transceivers have been commercially deployed in sub-6GHz bands. The fast progress was enabled by many solid research contributions of which the vast majority assume spatially uncorrelated channels and signal processing schemes developed for single-cell operation. These assumptions make the performance analysis and optimization of Massive MIMO tractable but have three major caveats: 1) practical channels are spatially correlated; 2) large performance gains can be obtained by multicell processing, without BS cooperation; 3) the interference caused by pilot contamination creates a finite capacity limit, as $M\to \infty $ . There is a thin line of papers that avoided these caveats, but the results are easily missed. Hence, this tutorial article explains the importance of considering spatial channel correlation and using signal processing schemes designed for multicell networks. We present recent results on the fundamental limits of Massive MIMO, which are not determined by pilot contamination but the ability to acquire channel statistics. These results will guide the journey towards the next level of Massive MIMO, which we call “Massive MIMO 2.0”.

中文翻译:

迈向大规模 MIMO 2.0:了解空间相关性、干扰抑制和导频污染

自 2010 年 Marzetta 发表开创性论文以来,Massive MIMO 已从具有无限数量天线的理论概念转变为实用技术。关键概念已被 5G 新无线电标准采用,并且具有 $M=64$ 全数字收发器的基站 (BS) 已在低于 6GHz 的频段中进行商业部署。许多坚实的研究贡献促成了快速进展,其中绝大多数假设为单细胞操作开发的空间不相关的通道和信号处理方案。这些假设使得大规模 MIMO 的性能分析和优化变得容易处理,但有三个主要警告:1) 实际信道是空间相关的;2) 多小区处理可以获得较大的性能增益,无需基站协作;3) 导频污染造成的干扰产生了有限的容量限制,如 $M\to \infty $ 。有一些论文避免了这些警告,但结果很容易被遗漏。因此,本教程文章解释了考虑空间信道相关性和使用为多小区网络设计的信号处理方案的重要性。我们介绍了大规模 MIMO 基本限制的最新结果,这些限制不是由导频污染决定的,而是由获取信道统计数据的能力决定的。这些结果将引导我们迈向下一级别的大规模 MIMO,我们称之为“大规模 MIMO 2.0”。本教程文章解释了考虑空间信道相关性和使用为多小区网络设计的信号处理方案的重要性。我们介绍了大规模 MIMO 基本限制的最新结果,这些限制不是由导频污染决定的,而是由获取信道统计数据的能力决定的。这些结果将引导我们迈向下一级别的大规模 MIMO,我们称之为“大规模 MIMO 2.0”。本教程文章解释了考虑空间信道相关性和使用为多小区网络设计的信号处理方案的重要性。我们介绍了大规模 MIMO 基本限制的最新结果,这些限制不是由导频污染决定的,而是由获取信道统计数据的能力决定的。这些结果将引导我们迈向下一级别的大规模 MIMO,我们称之为“大规模 MIMO 2.0”。
更新日期:2020-01-01
down
wechat
bug