当前位置: X-MOL 学术Environ. Model. Softw. › 论文详情
Smart meters data for modeling and forecasting water demand at the user-level
Environmental Modelling & Software ( IF 4.552 ) Pub Date : 2020-01-17 , DOI: 10.1016/j.envsoft.2020.104633
Jorge E. Pesantez; Emily Zechman Berglund; Nikhil Kaza

Smart meters installed at the user-level provide a new data source for managing water infrastructure. This research explores the use of machine learning methods, including Random Forests (RFs), Artificial Neural Networks (ANNs), and Support Vector Regression (SVR) to forecast hourly water demand at 90 accounts using smart-metered data. Demands are predicted using lagged demand, seasonality, weather, and household characteristics. Time-series clustering is applied to delineate data based on the time of day and days of the week, which improves model performance. Two modeling approaches are compared. Individual models are developed separately for each meter, and a Group model is trained using a data set of multiple meters. Individual models predict demands at meters in the original data set with lower error than Group models, while the Group model predicts demands at new meters with lower error than Individual models. Results demonstrate that RF and ANN perform better than SVR across all scenarios.
更新日期:2020-01-17

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug