当前位置: X-MOL 学术Desalination › 论文详情
Enhanced water collection of bio-inspired functional surfaces in high-speed flow for high performance demister
Desalination ( IF 6.035 ) Pub Date : 2020-01-17 , DOI: 10.1016/j.desal.2020.114314
Sun Woo Kim; Jaehyun Kim; Sung Soon Park; Dong Rip Kim

Performance enhancement of thermal desalination processes requires the excellent water separation capabilities in demisters. However, in high-speed gas flow, the re-entrainment of captured water from the surfaces to the gas flow can considerably decrease the water collection capabilities and the corresponding separation efficiency. Herein, we report fabrication of micro-structured polymer surfaces with excellent water capturing properties in low- and high-speed gas flow conditions by using a facile molding process. Inspired by the surfaces of bio-species, the fabricated surfaces possess vertically-aligned micro-scale cone arrays and sets of microchannels to significantly enhance the capillary pressure. As a result, those hybrid-structured surfaces exhibit up to 2.4 and 4.7 times higher excellent water collection capabilities than control planar at low- and high-speed flow conditions, respectively. In addition, the mist eliminator with the hybrid surfaces performs 1.8 times higher water collection behavior than the control mist eliminator with bare surfaces. The results show the promise of developing the surfaces with engineered structures for significantly enhancing water collection without changing the shapes of flow passages in target objects.
更新日期:2020-01-17

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug