当前位置: X-MOL 学术Adv. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Highly Stretchable Microsupercapacitor Using Laser‐Induced Graphene/NiO/Co3O4 Electrodes on a Biodegradable Waterborne Polyurethane Substrate
Advanced Materials Technologies ( IF 6.4 ) Pub Date : 2020-01-17 , DOI: 10.1002/admt.201900903
Wentao Wang 1 , Longsheng Lu 1 , Yingxi Xie 1 , Wei Yuan 1 , Zhenping Wan 1 , Yong Tang 1 , Kwok Siong Teh 2
Affiliation  

Constructing microsupercapacitors (MSCs) with an outstanding stretchability is urgent for wearable electronics, and an intrinsic biodegradability is also meaningful. Herein, laser‐induced graphene/NiO/Co3O4 (NiO/Co3O4/LIG) is in situ synthesized on a polyimide (PI) film during laser processing, then the electrodes are transferred to a biodegradable waterborne polyurethane (WPU) substrate to fabricate stretchable MSCs. Experimentally, the as‐prepared stretchable MSCs exhibit an excellent areal capacitance of 2.4 mF cm−2, high capacitance retention of 77.1% at 50% strain, and capacitance degradation of less than 19.8% after 1000 stretching cycles. These desirable properties are mainly attributed to the gradient structure of NiO/Co3O4/LIG, the synergistic effect of hybrid NiO/Co3O4 nanoparticles, and the intensive interface adhesion between the electrodes and WPU. Interestingly, the robust function of stretchable MSCs is further presented by using them to power a microsensor and assembling them with triboelectric nanogenerators to generate power from mechanical contact with skin, which makes the stretchable MSCs promising as a sustainable driving source for wearable electronics.

中文翻译:

在生物可降解水性聚氨酯基底上使用激光诱导的石墨烯/ NiO / Co3O4电极的高拉伸微电容器。

对于可穿戴电子设备而言,构建具有出色拉伸性的微型超级电容器(MSC)迫在眉睫,而且固有的生物降解性也很有意义。此处,在激光加工过程中,在聚酰亚胺(PI)膜上原位合成了激光诱导的石墨烯/ NiO / Co 3 O 4(NiO / Co 3 O 4 / LIG),然后将电极转移到可生物降解的水性聚氨酯(WPU)中)衬底以制造可拉伸的MSC。根据实验,所制备的可拉伸MSC具有出色的面电容,为2.4 mF cm -2,在50%的应变下具有77.1%的高电容保持率,并且在经过1000次拉伸循环后电容衰减小于19.8%。这些理想的性能主要归因于NiO / Co 3 O 4 / LIG的梯度结构,混合的NiO / Co 3 O 4纳米颗粒的协同效应以及电极与WPU之间的紧密界面粘合。有趣的是,可伸展的MSC的强大功能通过使用它们为微传感器供电并与摩擦电纳米发生器组装以通过与皮肤的机械接触产生动力来进一步展现,这使得可伸展的MSC有望成为可穿戴电子设备的可持续驱动源。
更新日期:2020-02-10
down
wechat
bug