当前位置: X-MOL 学术Opt. Express › 论文详情
High accuracy determination of copper in copper concentrate with double genetic algorithm and partial least square in laser-induced breakdown spectroscopy
Optics Express ( IF 3.561 ) Pub Date : 2020-01-15 , DOI: 10.1364/oe.381582
Haochen Li, Meizhen Huang, and Huidi Xu

There are many challenges in the determination of elements in complex matrix such as soil, coal and minerals by laser induced breakdown spectroscopy (LIBS) method. Due to the influence of matrix effect, instability of laser plasma and fluctuation of laser parameters, the repeatability and accuracy of quantitative results are always not satisfactory. In order to improve the accuracy, high-energy laser (30mJ-100mJ) with precise control was utilized in many laboratories. In this paper, quantitative analysis of copper in copper concentrate by low-energy (10µJ) LIBS is studied. In order to reduce the influence of matrix effect and other factors, a partial least square regression method based on double genetic algorithm (DGA-PLS) is proposed. The detail operations are as follow: the reference spectral lines are automatically selected by GA as the optimal internal standard for spectral normalization. Then the GA is used to select variables from the normalized spectra for PLS. The results showed that, for univariate model, the coefficient of determination (R2) was improved from 0.6 to 0.97 by the optimal internal standard normalization. Compared with tradition PLS, the root mean square error of cross validation (RMSECV) and root mean square error of prediction (RMSEP) of PLS trained by the normalized spectral data decreased from 1.4% and 0.42% to 0.9% and 0.29% respectively. Compared with the normalized PLS, the RMSECV and RMSEP of the DGA-PLS trained by the normalized and feature selected spectral data decreased from 0.9% and 0.29% to 0.26% and 0.21% respectively. The results show that DGA-PLS can significantly reduce matrix effect, improve prediction accuracy and reduce the risk of overfitting in determination of copper in copper concentrate.
更新日期:2020-01-17

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug