当前位置: X-MOL 学术Macromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lewis Pair Polymerization of Renewable Indenone to Erythro-Ditactic High-Tg Polymers with an Upcycling Avenue
Macromolecules ( IF 5.1 ) Pub Date : 2020-01-16 , DOI: 10.1021/acs.macromol.9b02285
Ryan W. Clarke 1 , Michael L. McGraw 1 , Ravikumar R. Gowda 1 , Eugene Y.-X. Chen 1
Affiliation  

Preparation and storage of biorenewable, monomeric indenone, much less the polymerization to a well-defined, high-molecular-weight polymer, is challenging because of antiaromaticity-driven radical autopolymerization. Herein, we report the successful preparation and subsequent Lewis pair polymerization (LPP) of indenone without autopolymerization side reactions using Lewis pairs consisting of sterically encumbered Lewis acid (LA) catalysts, such as B(C6F5)3 and bis(2,6-tert-butyl-4-methylphenoxy)methylaluminum and Lewis base initiators such as silyl ketene acetal and N-heterocyclic olefin nucleophiles. Thus, for the first time, the LPP enabled the synthesis of polyindenone (Pin) with high number-average molecular weight (Mn = 1.72 × 105 g mol–1) and low dispersity ( = 1.13). Observed correlations between the steric bulk of the LA catalyst and diastereoselectivity (57–75%) created the opportunity to model and investigate the relationships between β-substituted monomer motifs, catalyst steric accessibility, and the propagation stereodefining step for ensuing ditactic assignments. Through the increased erythro-diastereoselectivity, semicrystalline materials were produced with remarkably high glass-transition temperatures (Tg = 307 °C), high thermal stability (Td,5% = 356 °C), and competitive transmittance (T %) and haziness values (T % = 85–88%, haze = 11%). Controlled pyrolysis of Pin upconverted it into versatile graphite oxide with 54% conversion, offering an upcycling avenue for Pin at the end of its life.

中文翻译:

可再生茚满的路易斯对聚合为具有上环化途径的Erthro-Ditactic高T g聚合物

由于抗芳香性驱动的自由基自聚合作用,生物可再生单体茚满酮的制备和储存,更不用说聚合成定义明确的高分子量聚合物了,具有挑战性。本文中,我们报道了成功的制备和随后的茚并酮的路易斯对聚合(LPP),并且没有使用由空间受限的路易斯酸(LA)催化剂(例如B(C 6 F 53和bis(2, 6-丁基-4-甲基苯氧基)甲基铝和路易斯碱引发剂,例如甲硅烷基乙烯酮缩醛和N-杂环烯烃亲核试剂。因此,LPP首次实现了数均分子量高的聚茚酮(Pin)的合成(M n = 1.72×10 5 g mol –1),分散度低( = 1.13)。观察到的LA催化剂的空间体积与非对映选择性(57-75%)之间的相关性为建模和研究β-取代的单体基序,催化剂的空间可及性以及随后的确定立体分配的传播立体定义步骤之间的关系提供了机会。通过增加的非对映体非对映选择性,制得的半结晶材料具有极高的玻璃化转变温度(T g = 307°C),高热稳定性(T d,5% = 356°C),竞争性透射率(T%)和雾度值(T%= 85–88%,雾度= 11%)。Pin的受控热解将其上转换为具有54%转化率的通用氧化石墨,从而在Pin的使用寿命结束时为其提供了升级途径。
更新日期:2020-01-16
down
wechat
bug