当前位置: X-MOL 学术Rev. Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent advances and challenges of waveform‐based seismic location methods at multiple scales
Reviews of Geophysics ( IF 25.2 ) Pub Date : 2020-01-30 , DOI: 10.1029/2019rg000667
Lei Li 1, 2, 3 , Jingqiang Tan 1, 2, 3 , Benjamin Schwarz 4 , František Staněk 5 , Natalia Poiata 6, 7 , Peidong Shi 8 , Leon Diekmann 9 , Leo Eisner 10 , Dirk Gajewski 11
Affiliation  

Source locations provide fundamental information on earthquakes and lay the foundation for seismic monitoring at all scales. Seismic source location as a classical inverse problem has experienced significant methodological progress during the past century. Unlike the conventional traveltime‐based location methods that mainly utilize kinematic information, a new category of waveform‐based methods, including partial waveform stacking, time reverse imaging, wavefront tomography, and full waveform inversion, adapted from migration or stacking techniques in exploration seismology has emerged. Waveform‐based methods have shown promising results in characterizing weak seismic events at multiple scales, especially for abundant microearthquakes induced by hydraulic fracturing in unconventional and geothermal reservoirs or foreshock and aftershock activity potentially preceding tectonic earthquakes. This review presents a comprehensive summary of the current status of waveform‐based location methods, through elaboration of the methodological principles, categorization, and connections, as well as illustration of the applications to natural and induced/triggered seismicity, ranging from laboratory acoustic emission to field hydraulic fracturing‐induced seismicity, regional tectonic, and volcanic earthquakes. Taking into account recent developments in instrumentation and the increasing availability of more powerful computational resources, we highlight recent accomplishments and prevailing challenges of different waveform‐based location methods and what they promise to offer in the near future. Plain language summary Earthquakes are a common physical phenomenon involving ground shaking and rupturing of the surface of the Earth. In addition to the well‐known catastrophic tectonic earthquakes, similar vibration sources also appear at various scales in engineering fields, such as acoustic emissions resulting from microcracks in building walls and bridges, rock bursts in mines, microseismic events generated by mining and fluid injection/extraction, and microseisms caused by crustal activity. Seismic information provides a powerful tool for geophysical and engineering surveys. The source location describes the spatial and temporal extent of an earthquake and lays the foundation for seismic monitoring. Seismic location methods have made significant progress over the last century. Specifically, a category of new waveform‐based location methods has emerged as a counterpart of conventional traveltime‐based inversion. These methods directly utilize the notion of a wavefield and, very similar to an optical lens, aim at spatially focusing a source's emitted energy. Waveform‐based methods have provided robust and effective source location results at various scales. We summarize the development history and current state of waveform‐based location methods and discuss the advantages and challenges through their applications for seismic source location at multiple scales.

中文翻译:

基于波形的多尺度地震定位方法的最新进展与挑战

震源位置提供地震的基本信息,并为所有尺度的地震监测奠定基础。地震源定位作为一个经典的反问题在过去的一个世纪中经历了重大的方法论进步。不同于传统的主要利用运动学信息的基于走时的定位方法,一种新的基于波形的方法,包括部分波形叠加、时间逆向成像、波前层析成像和全波形反演,改编自勘探地震学中的偏移或叠加技术。出现了。基于波形的方法在表征多尺度弱地震事件方面显示出有希望的结果,特别是对于由非常规和地热储层中的水力压裂引起的大量微地震或可能在构造地震之前发生的前震和余震活动。本综述通过阐述方法原理、分类和联系,以及对自然和诱发/触发地震活动的应用说明,全面总结了基于波形的定位方法的现状,从实验室声发射到现场水力压裂诱发的地震活动、区域构造地震和火山地震。考虑到仪器仪表的最新发展以及更强大的计算资源的日益普及,我们重点介绍了不同基于波形的定位方法的近期成就和普遍挑战,以及它们在不久的将来会提供什么。简单的语言总结 地震是一种常见的物理现象,涉及地面震动和地球表面破裂。除了众所周知的灾难性构造地震外,类似的振动源也​​出现在工程领域的不同尺度上,例如建筑墙体和桥梁微裂缝产生的声发射、矿山中的岩爆、采矿和流体注入产生的微地震事件/提取和地壳活动引起的微震。地震信息为地球物理和工程调查提供了强大的工具。震源位置描述了地震的空间和时间范围,为地震监测奠定了基础。地震定位方法在上个世纪取得了重大进展。具体来说,一类新的基于波形的定位方法已经成为传统基于走时反演的对应物。这些方法直接利用波场的概念,与光学透镜非常相似,旨在空间聚焦源发射的能量。基于波形的方法在各种尺度上提供了稳健有效的源定位结果。我们总结了基于波形的定位方法的发展历史和现状,并通过它们在多尺度震源定位中的应用讨论了其优势和挑战。地震定位方法在上个世纪取得了重大进展。具体来说,一类新的基于波形的定位方法已经成为传统基于走时反演的对应物。这些方法直接利用波场的概念,与光学透镜非常相似,旨在空间聚焦源发射的能量。基于波形的方法在各种尺度上提供了稳健有效的源定位结果。我们总结了基于波形的定位方法的发展历史和现状,并通过它们在多尺度震源定位中的应用讨论了其优势和挑战。地震定位方法在上个世纪取得了重大进展。具体来说,一类新的基于波形的定位方法已经成为传统基于走时反演的对应物。这些方法直接利用波场的概念,与光学透镜非常相似,旨在空间聚焦源发射的能量。基于波形的方法在各种尺度上提供了稳健有效的源定位结果。我们总结了基于波形的定位方法的发展历史和现状,并通过它们在多尺度震源定位中的应用讨论了其优势和挑战。这些方法直接利用波场的概念,与光学透镜非常相似,旨在空间聚焦源发射的能量。基于波形的方法在各种尺度上提供了稳健有效的源定位结果。我们总结了基于波形的定位方法的发展历史和现状,并通过它们在多尺度震源定位中的应用讨论了其优势和挑战。这些方法直接利用波场的概念,与光学透镜非常相似,旨在空间聚焦源发射的能量。基于波形的方法在各种尺度上提供了稳健有效的源定位结果。我们总结了基于波形的定位方法的发展历史和现状,并通过它们在多尺度震源定位中的应用讨论了其优势和挑战。
更新日期:2020-01-30
down
wechat
bug