当前位置: X-MOL 学术J. Differ. Equ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces
Journal of Differential Equations ( IF 2.4 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.jde.2019.12.017
Tadahiro Oh , Yuzhao Wang

In this paper, we first introduce a new function space $MH^{\theta, p}$ whose norm is given by the $\ell^p$-sum of modulated $H^\theta$-norms of a given function. In particular, when $\theta < -\frac 12$, we show that the space $MH^{\theta, p}$ agrees with the modulation space $M^{2, p}(\mathbb R)$ on the real line and the Fourier-Lebesgue space $\mathcal F L^{p}(\mathbb T)$ on the circle. We use this equivalence of the norms and the Galilean symmetry to adapt the conserved quantities constructed by Killip-Visan-Zhang to the modulation space setting. By applying the scaling symmetry, we then prove global well-posedness of the one-dimensional cubic nonlinear Schrodinger equation (NLS) in almost critical spaces. More precisely, we show that the cubic NLS on $\mathbb R$ is globally well-posed in $M^{2, p}(\mathbb R)$ for any $p < \infty$, while the renormalized cubic NLS on $\mathbb T$ is globally well-posed in $\mathcal FL^p(\mathbb T)$ for any $p < \infty$. In Appendix, we also establish analogous global-in-time bounds for the modified KdV equation (mKdV) in the modulation spaces on the real line and in the Fourier-Lebesgue spaces on the circle. An additional key ingredient of the proof in this case is a Galilean transform which converts the mKdV to the mKdV-NLS equation.

中文翻译:

几乎临界空间中一维三次非线性薛定谔方程的全局适定性

在本文中,我们首先介绍了一个新的函数空间 $MH^{\theta, p}$,其范数由给定函数的调制 $H^\theta$-范数的 $\ell^p$-sum 给出。特别地,当 $\theta < -\frac 12$ 时,我们表明空间 $MH^{\theta, p}$ 与调制空间 $M^{2, p}(\mathbb R)$ 在实线和圆上的傅立叶-勒贝格空间 $\mathcal FL^{p}(\mathbb T)$。我们使用范数的这种等价性和伽利略对称性来使 Killip-Visan-Zhang 构造的守恒量适应调制空间设置。通过应用尺度对称性,我们然后证明了一维三次非线性薛定谔方程(NLS)在几乎临界空间中的全局适定性。更准确地说,我们证明 $\mathbb R$ 上的三次 NLS 在 $M^{2, p}(\mathbb R)$ 中全局适定,对于任何 $p < \infty$,而 $\mathbb T$ 上的重整化三次 NLS 在 $\mathcal FL^p(\mathbb T)$ 中全局适定,对于任何 $p < \infty$。在附录中,我们还在实线上的调制空间和圆上的傅立叶-勒贝格空间中为修正的 KdV 方程 (mKdV) 建立了类似的全局时间界限。在这种情况下,证明的另一个关键要素是伽利略变换,它将 mKdV 转换为 mKdV-NLS 方程。
更新日期:2020-06-01
down
wechat
bug