当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
A new fast search algorithm for exact k-nearest neighbors based on optimal triangle-inequality-based check strategy
Knowledge-Based Systems ( IF 5.921 ) Pub Date : 2019-10-09 , DOI: 10.1016/j.knosys.2019.105088
Yiwei Pan; Zhibin Pan; Yikun Wang; Wei Wang

The k-nearest neighbor (KNN) algorithm has been widely used in pattern recognition, regression, outlier detection and other data mining areas. However, it suffers from the large distance computation cost, especially when dealing with big data applications. In this paper, we propose a new fast search (FS) algorithm for exact k-nearest neighbors based on optimal triangle-inequality-based (OTI) check strategy. During the procedure of searching exact k-nearest neighbors for any query, the OTI check strategy can eliminate more redundant distance computations for the instances located in the marginal area of neighboring clusters compared with the original TI check strategy. Considering the large space complexity and extra time complexity of OTI, we also propose an efficient optimal triangle-inequality-based (EOTI) check strategy. The experimental results demonstrate that our proposed two algorithms (OTI and EOTI) achieve the best performance compared with other related KNN fast search algorithms, especially in the case of dealing with high-dimensional datasets.

更新日期:2020-01-16

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug