当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Label propagation-based approach for detecting review spammer groups on e-commerce websites
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-01-16 , DOI: 10.1016/j.knosys.2020.105520
Fuzhi Zhang; Xiaoyan Hao; Jinbo Chao; Shuai Yuan

Online product reviews are very important information resources on e-commerce websites and significantly influence consumers’ purchase decisions. Driven by interests, however, some merchants might hire a group of reviewers working together to promote or demote a set of target products by writing fake reviews. Such a collusive fraudulent reviewer group is generally termed a review spammer group and is more harmful to e-commerce websites than individual review spammers. To address this issue, in this paper we propose a label propagation-based approach to detect review spammer groups on e-commerce websites. First, based on the evaluation data of reviewers, we extract the associations between reviewers with respect to review time and product ratings to construct a relationship graph of reviewers. Second, we propose an improved label propagation algorithm with a propagation intensity and an automatic filtering mechanism to find candidate spammer groups based on the constructed reviewer relationship graph. Finally, we propose a ranking algorithm that combines the entropy method and the analytic hierarchy process to rank the candidate spammer groups and thus identify the top-k review spammer groups. The experimental results of the real-world Amazon and Yelp datasets show that the proposed approach performs better than the baseline methods.
更新日期:2020-01-16

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug