当前位置: X-MOL 学术Prog. Nat. Sci. Mater. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Annealing temperature-dependent electrochemical properties of Aeroxide P25 TiO2 nanoparticles as anode material for lithium storage
Progress in Natural Science: Materials International ( IF 4.7 ) Pub Date : 2019-12-01 , DOI: 10.1016/j.pnsc.2019.11.008
Tuo Zhang , Kaiming Li , Jia Hong Pan

Abstract TiO2 has been widely studied as an important electrode material for electrochemical energy storage. Understanding its relationship between textural properties and electrochemical characteristics is essential to boosting its practical performances. Herein, Aeroxide P25 TiO2 nanoparticles annealing at different temperatures (400–600 °C) were investigated as an anode material of lithium ion battery. Their evolution in crystal phase and microstructural characteristics were characterized by XRD and BET surface analysis, and their lithium storage properties in half-cells were evaluated by various electrochemical analyses, including cyclic voltammetry, cycling testing, and electrochemical impedance spectroscopy. It was found that the lithium storage properties were critically dependent on the size of TiO2 anode materials. Pristine P25 initially exhibited the highest initial discharge specific capacity due to its smallest particle size; however, rapid capacity loss occurred during extended cycling. The annealing process was found to effectively enhance the cycling stability of TiO2 although possessing a large particle size and smaller surface area. Typically, P400 showed the best performances in cycling stability, capacity retention ratio, and rate capability, which is mainly attributed to the synergistic effect of high crystallinity, reasonable particle size, and less internal resistance. This study provides an instance of optimizing the textural properties of metal oxides for advanced LIB anode material applications.

中文翻译:

Aeroxide P25 TiO2纳米颗粒作为锂储存负极材料的退火温度依赖性电化学性能

摘要 TiO2 作为一种重要的电化学储能电极材料已被广泛研究。了解其结构特性和电化学特性之间的关系对于提高其实际性能至关重要。在此,研究了在不同温度(400-600°C)下退火的 Aeroxide P25 TiO2 纳米颗粒作为锂离子电池的负极材料。通过 XRD 和 BET 表面分析表征了它们的晶相和微观结构特征的演变,并通过各种电化学分析评估了它们在半电池中的储锂性能,包括循环伏安法、循环测试和电化学阻抗谱。发现锂存储性能严重依赖于 TiO2 负极材料的尺寸。由于粒径最小,Pristine P25 最初表现出最高的初始放电比容量;然而,在延长循环期间发生了快速的容量损失。发现退火过程有效地提高了 TiO2 的循环稳定性,尽管它具有较大的粒径和较小的表面积。通常,P400在循环稳定性、容量保持率和倍率性能方面表现出最好的性能,这主要归功于高结晶度、合理粒径和较小内阻的协同作用。该研究提供了一个优化金属氧化物结构特性的实例,用于先进的 LIB 负极材料应用。在延长循环期间发生快速容量损失。尽管具有较大的粒径和较小的表面积,但发现退火过程有效地提高了 TiO2 的循环稳定性。通常,P400在循环稳定性、容量保持率和倍率性能方面表现出最好的性能,这主要归功于高结晶度、合理粒径和较小内阻的协同作用。该研究提供了一个优化金属氧化物结构特性的实例,用于先进的 LIB 负极材料应用。在延长循环期间发生快速容量损失。尽管具有较大的粒径和较小的表面积,但发现退火过程有效地提高了 TiO2 的循环稳定性。通常,P400在循环稳定性、容量保持率和倍率性能方面表现出最好的性能,这主要归功于高结晶度、合理粒径和较小内阻的协同作用。该研究提供了一个优化金属氧化物结构特性的实例,用于先进的 LIB 负极材料应用。这主要归功于结晶度高、粒径合理、内阻较小的协同作用。本研究提供了一个优化金属氧化物结构特性的实例,用于先进的 LIB 负极材料应用。这主要归功于结晶度高、粒径合理、内阻较小的协同作用。该研究提供了一个优化金属氧化物结构特性的实例,用于先进的 LIB 负极材料应用。
更新日期:2019-12-01
down
wechat
bug