当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Local confinement and alloy/dealloy activation of Sn–Cu nanoarrays for high-performance lithium-ion battery
Electrochimica Acta ( IF 5.5 ) Pub Date : 2020-01-16 , DOI: 10.1016/j.electacta.2020.135690
Yi Ning Wang , Jian Yang Jiang , Xiong Xiong Liu , Xingquan Liu , Yong Xiang , Rui Wu , Yan Chen , Jun Song Chen

The practical application of Sn-based anodes are seriously hampered by the dramatic volume expansion (∼300%) during charge/discharge processes, which induces large internal stress that can make the anode materials easily pulverized and cracked to cause the loss of electrical contact and thus severe capacity fading. In order to address this problem, a versatile strategy has been developed for preparing multiple Sn/Cu nanoarrrays including Cu–Sn end-to-end nanowires (NWs), [email protected] core-shell NWs and [email protected] core-shell semi-nanotubes (NTs) through a two-step successive-electrodeposition process with track-etched polycarbonate (PC) membranes as template: metallic Cu nanowire arrays are first electrodeposited inside the nanopores of the PC membrane on the Cu foil substrate, followed by the deposition of Sn in the second step. The architectures of these samples can be readily tuned by modifying the synthesis conditions or by treating the PC membrane with 3-aminopropyl-triethorxysilane (APTES). The distinct structures of these electrodes provide a high performance in lithium ion batteries. The discharge capacity of Cu–Sn NWs, [email protected] NWs, and [email protected] NTs after 400 charge-discharge cycles at a specific current of 0.8 A g−1 is 714, 402, and 1193 mA h g−1, respectively. Such a performance can be attributed to a local confinement effect between Sn and Cu which inhibits the pulverization of the active material, and an alloy/dealloy activation process achieving high reversible capacities.



中文翻译:

高性能锂离子电池Sn-Cu纳米阵列的局部限制和合金/合金激活

充电/放电过程中体积急剧膨胀(约300%)严重阻碍了Sn基阳极的实际应用,这会导致较大的内部应力,从而使阳极材料容易粉碎和破裂,从而导致电接触损失和因此严重的容量衰减。为了解决这个问题,已经开发了一种通用的策略来制备多种Sn / Cu纳米阵列,包括Cu-Sn端对端纳米线(NW),[受电子邮件保护的]核壳NW和[受电子邮件保护的]核壳半纳米管(NTs)通过两步连续电沉积工艺,以轨道蚀刻的聚碳酸酯(PC)膜为模板:首先将金属Cu纳米线阵列电沉积在Cu箔基板上PC膜的纳米孔内,然后进行第二步沉积锡。这些样品的结构可以通过修改合成条件或通过用3-氨丙基三乙氧基硅烷(APTES)处理PC膜来轻松调整。这些电极的独特结构在锂离子电池中提供了高性能。Cu-Sn NW,[受电子邮件保护的] NW和[受电子邮件保护的] NTs在400 A的特定放电电流下的放电容量为0.8 A g-1分别是714、402和1193 mA h g -1。这种性能可归因于Sn和Cu之间的局部限制作用,其抑制了活性材料的粉化,以及合金/合金活化过程实现了高可逆容量。

更新日期:2020-01-16
down
wechat
bug