当前位置: X-MOL 学术Can. J. Anesth › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Four early warning scores predict mortality in emergency surgical patients at University Teaching Hospital, Lusaka: a prospective observational study
Canadian Journal of Anesthesia ( IF 3.4 ) Pub Date : 2019-10-09 , DOI: 10.1007/s12630-019-01503-8
Katie Ellen Foy , Janaki Pearson , Laura Kettley , Niharika Lal , Holly Blackwood , M. Dylan Bould

Abstract

Purpose

The value of early warning scoring systems has been established in high-income countries. There is little evidence for their use in low-resource settings. We aimed to compare existing early warning scores to predict 30-day mortality.

Methods

University Teaching Hospital is a tertiary center in Lusaka, Zambia. Adult surgical patients, excluding obstetrics, admitted for > 24 hr were included in this prospective observational study. On days 1 to 3 of admission, we collected data on patient demographics, heart rate, blood pressure, oxygen saturation, oxygen administration, temperature, consciousness level, and mobility. Two-, three-, and 30-day mortality were recorded with their associated variables analyzed using area under receiver operating curves (AUROC) for the National Early Warning Score (NEWS); the Modified Early Warning Score (MEWS); a modified Hypotension, Oxygen Saturation, Temperature, ECG, Loss of Independence (mHOTEL) score; and the Tachypnea, Oxygen saturation, Temperature, Alertness, Loss of Independence (TOTAL) score.

Results

Data were available for 254 patients from March 2017 to July 2017. Eighteen (7.5%) patients died at 30 days. The four early warning scores were found to be predictive of 30-day mortality: MEWS (AUROC, 0.76; 95% confidence interval [CI], 0.63 to 0.88; P < 0.001), NEWS (AUROC 0.805; 95% CI, 0.688 to 0.92; P < 0.001), mHOTEL (AUROC 0.759; 95% CI, 0.63 to 0.89, P < 0.001), and TOTAL (AUROC 0.782; 95% CI, 0.66 to 0.90; P < 0.001).

Conclusions

We validated four scoring systems in predicting mortality in a Zambian surgical population. Further work is required to assess if implementation of these scoring systems can improve outcomes.



中文翻译:

卢萨卡大学教学医院的四个预警得分预测急诊手术患者的死亡率:一项前瞻性观察研究

摘要

目的

高收入国家已经确立了预警评分系统的价值。没有证据表明它们可用于资源匮乏的地区。我们旨在比较现有的预警得分以预测30天死亡率。

方法

大学教学医院是位于赞比亚卢萨卡的三级中心。该前瞻性观察研究包括了不包括产科在内的≥24小时的成年外科手术患者。在入院的第1至3天,我们收集了有关患者人口统计学,心率,血压,血氧饱和度,输氧量,温度,意识水平和活动能力的数据。记录2天,3天和30天的死亡率,并使用国家预警得分(NEWS)的接收者工作曲线下面积(AUROC)分析相关变量。修改后的预警评分(MEWS);修改后的低血压,氧饱和度,温度,心电图,独立性丧失(mHOTEL)评分;以及呼吸急促,氧饱和度,温度,警觉性,独立性丧失(TOTAL)得分。

结果

从2017年3月到2017年7月,有254名患者的数据可用。30天时有18名(7.5%)患者死亡。发现这四个预警得分可预测30天死亡率:MEWS(AUROC,0.76; 95%置信区间[CI],0.63至0.88; P <0.001),NEWS(AUROC 0.805; 95%CI,0.688至0.92; P <0.001),mHOTEL(AUROC 0.759; 95%CI,0.63至0.89,P <0.001)和TOTAL(AUROC 0.782; 95%CI,0.66至0.90; P <0.001)。

结论

我们验证了四个评分系统,用于预测赞比亚手术人群的死亡率。需要进一步的工作来评估实施这些评分系统是否可以改善结果。

更新日期:2020-01-16
down
wechat
bug