当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2.
Chemosphere ( IF 8.1 ) Pub Date : 2020-01-16 , DOI: 10.1016/j.chemosphere.2020.125911
Jordan Hollman 1 , John Albino Dominic 1 , Gopal Achari 1
Affiliation  

This paper presents an evaluation of UV/PAA process for degradation of four pharmaceuticals venlafaxine (VEN), sulfamethoxazole (SFX), fluoxetine (FLU) and carbamazepine (CBZ) with comparison to UV/H2O2 process. The effectiveness of combining PAA and H2O2 at various proportions while irradiating with UVC were also evaluated. UVC/PAA (λ = 254 nm) was effective in degrading all four pharmaceuticals and followed pseudo first-order kinetics. Increasing PAA dosage or UVC intensity resulted in a linear increase in pseudo-first order rate coefficient. Both PAA in dark conditions and UVA/PAA (λ = 360 nm) were marginally effective to degrade SFX and ineffective to degrade VEN, CBZ and FLU; indicating the need for UVC irradiation for activation of PAA. For similar oxidant dosages of 50 mg/L UVC/H2O2 was found to be faster than UV/PAA for VEN, CBZ and FLU by 55%, 75% and 33%, respectively. Under similar conditions, SFX was degraded 24% faster by UV/PAA. Increase in the proportion of H2O2 to PAA in UVC/PAA/H2O2 improved kinetics of degradation compared to PAA alone. Tests on TOC were conducted to determine the amount of acetic acid that is released to water when treatment by UVC/PAA is conducted. Results demonstrated that 70% of PAA by mass was ultimately converted to acetic acid and remained in the treated solutions. Hydroxyl radical attack is hypothesized to be the main mechanism of degradation by UV/PAA as degradation intermediates identified for all the target pharmaceuticals coincided with by-products identified during UV/H2O2 process.

中文翻译:

使用UV /过乙酸工艺降解水溶液中的药物混合物:动力学,降解途径以及与UV / H2O2的比较。

本文介绍了使用UV / PAA工艺降解四种药物文拉法辛(VEN),磺胺甲恶唑(SFX),氟西汀(FLU)和卡马西平(CBZ)的效果,并与UV / H2O2工艺进行了比较。还评估了在用UVC辐照的同时以不同比例混合PAA和H2O2的有效性。UVC / PAA(λ= 254 nm)可有效降解所有四种药物并遵循假一级动力学。PAA剂量或UVC强度的增加导致伪一级速率系数线性增加。在黑暗条件下的PAA和UVA / PAA(λ= 360 nm)在降解SFX方面均有效,而在VEN,CBZ和FLU方面均无效。表明需要使用UVC辐射来激活PAA。对于50 mg / L的类似氧化剂,发现VEN的UVC / H2O2速度快于UV / PAA,CBZ和FLU分别降低了55%,75%和33%。在类似条件下,UV / PAA可使SFX降解速度加快24%。与单独使用PAA相比,增加UVC / PAA / H2O2中H2O2与PAA的比例可改善降解动力学。进行了TOC测试,以确定通过UVC / PAA处理时释放到水中的乙酸量。结果表明,按质量计70%的PAA最终转化为乙酸并保留在处理过的溶液中。羟基自由基攻击被认为是UV / PAA降解的主要机制,因为针对所有目标药物鉴定的降解中间体与在UV / H2O2过程中鉴定的副产物一致。与单独使用PAA相比,增加UVC / PAA / H2O2中H2O2与PAA的比例可改善降解动力学。进行了TOC测试,以确定通过UVC / PAA处理时释放到水中的乙酸量。结果表明,按质量计70%的PAA最终转化为乙酸并保留在处理过的溶液中。羟基自由基攻击被认为是UV / PAA降解的主要机制,因为针对所有目标药物鉴定的降解中间体与在UV / H2O2过程中鉴定的副产物一致。与单独使用PAA相比,增加UVC / PAA / H2O2中H2O2与PAA的比例可改善降解动力学。进行了TOC测试,以确定通过UVC / PAA处理时释放到水中的乙酸量。结果表明,按质量计70%的PAA最终转化为乙酸并保留在处理过的溶液中。羟基自由基攻击被认为是UV / PAA降解的主要机制,因为针对所有目标药物鉴定的降解中间体与在UV / H2O2过程中鉴定的副产物一致。结果表明,按质量计70%的PAA最终转化为乙酸并保留在处理过的溶液中。羟基自由基攻击被认为是UV / PAA降解的主要机制,因为针对所有目标药物鉴定的降解中间体与在UV / H2O2过程中鉴定的副产物一致。结果表明,按质量计70%的PAA最终转化为乙酸并保留在处理过的溶液中。羟基自由基攻击被认为是UV / PAA降解的主要机制,因为针对所有目标药物鉴定的降解中间体与在UV / H2O2过程中鉴定的副产物一致。
更新日期:2020-01-16
down
wechat
bug