当前位置: X-MOL 学术ACS Appl. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic Band Structure of In-Plane Ferroelectric van der Waals β′-In2Se3
ACS Applied Electronic Materials ( IF 4.3 ) Pub Date : 2020-01-15 , DOI: 10.1021/acsaelm.9b00699
James L. Collins 1, 2, 3 , Chutian Wang 3, 4 , Anton Tadich 3, 5 , Yuefeng Yin 3, 4 , Changxi Zheng 1, 2, 3 , Jack Hellerstedt 1, 2, 3 , Antonija Grubišić-Čabo 1, 2, 3 , Shujie Tang 6 , Sung-Kwan Mo 6 , John Riley 7 , Eric Huwald 7 , Nikhil V. Medhekar 3, 4 , Michael S. Fuhrer 1, 2, 3 , Mark T. Edmonds 1, 2, 3
Affiliation  

Layered indium selenides (In2Se3) have recently been discovered to host robust out-of-plane and in-plane ferroelectricity in the α- and β′-phases, respectively. In this work, we utilize angle-resolved photoelectron spectroscopy to directly measure the electronic band structure of β′-In2Se3 and compare to hybrid density functional theory (DFT) calculations. In agreement with DFT, we find the band structure is highly two-dimensional, with negligible dispersion along the c-axis. Because of n-type doping we can observe the conduction band minima and directly measure the minimum indirect (0.97 eV) and direct (1.46 eV) bandgaps. We find the Fermi surface in the conduction band is characterized by anisotropic electron pockets with sharp in-plane dispersion about the M̅ points, yielding effective masses of 0.21m0 along KM and 0.33m0 along ΓM. The measured band structure is well supported by hybrid density functional theory calculations. The highly two-dimensional (2D) band structure with moderate bandgap and small effective mass suggests that β′-In2Se3 is a potentially useful van der Waals semiconductor. This, together with its ferroelectricity makes it a viable material for high-mobility ferroelectric–photovoltaic devices, with applications in nonvolatile memory switching and renewable energy technologies.

中文翻译:

在平面铁电面包车的电子能带结构范德华β'-在23

最近发现层状硒化铟(In 2 Se 3)在α相和β′相中分别具有强大的面外和面铁电性。在这项工作中,我们利用角分辨光电子能谱,以直接测量β'-中的电子能带结构23,并比较混合密度泛函理论(DFT)计算。与DFT一致,我们发现能带结构是高度二维的,沿c轴的色散可忽略不计。因为n型掺杂,我们可以观察到导带最小值,并直接测量最小的间接(0.97 eV)和直接(1.46 eV)带隙。我们发现在导带中费米表面的特征在于与对M个点急剧内分散各向异性电子口袋,得到0.21有效质量0沿KM和0.330沿γM。混合密度泛函理论计算很好地支持了测得的能带结构。高度的二维(2D)带有中度的带隙和较小的有效质量结构表明,β'-在23是潜在有用的范德华半导体。加上铁电性,使其成为用于高迁移率铁电-光伏器件的可行材料,并应用于非易失性存储器开关和可再生能源技术中。
更新日期:2020-01-15
down
wechat
bug