当前位置: X-MOL 学术Nanoscale Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of Joule Heating on Resistive Switching Characteristic in AlOx Cells Made by Thermal Oxidation Formation.
Nanoscale Research Letters ( IF 5.5 ) Pub Date : 2020-01-15 , DOI: 10.1186/s11671-019-3229-y
Xinxin Zhang 1, 2 , Ling Xu 1, 2 , Hui Zhang 1, 2 , Jian Liu 1, 2 , Dingwen Tan 1, 2 , Liangliang Chen 1, 2 , Zhongyuan Ma 1, 2 , Wei Li 1, 2
Affiliation  

The AlOx-based resistive switching memory device is fabricated by an oxidation diffusion process that involves depositing an Al film on an ITO substrate and annealing at 400 °C in a vacuum. An AlOx interface layer with a thickness of ~ 20 nm is formed as a resistance switching layer. Bipolar and unipolar resistive switching (RS) behaviours are obtained when the compliance current is limited (≥ 1 mA). In the unipolar RS behaviour, the devices fail to perform set/reset cycles at a low temperature (40 K), which suggests that Joule heating is essential for the unipolar RS behaviour. In the bipolar RS behaviour, the abrupt reset transforms into a gradual reset with decreasing temperature, which suggests that Joule heating affects the rupture of the conductive filament. In addition, the conductive mechanisms in the high-resistance state and low-resistance state are revealed by the temperature dependence of the I-V curves. For the low-resistance state, the conduction mechanism is due to the electron hopping mechanism, with a hopping activation energy of 9.93 meV. For the high-resistance state, transport mechanism is dominated by the space-charge-limited conduction (SCLC) mechanism.

中文翻译:


焦耳热对热氧化形成的 AlOx 电池电阻开关特性的影响。



基于 AlOx 的阻变存储器件是通过氧化扩散工艺制造的,该工艺包括在 ITO 基板上沉积 Al 薄膜并在真空中于 400 °C 下进行退火。形成厚度约20nm的AlOx界面层作为电阻切换层。当顺从电流受到限制 (≥ 1 mA) 时,可以获得双极和单极电阻开关 (RS) 行为。在单极 RS 行为中,器件无法在低温 (40 K) 下执行设置/重置循环,这表明焦耳热对于单极 RS 行为至关重要。在双极 RS 行为中,随着温度降低,突然复位转变为逐渐复位,这表明焦耳热影响导电丝的断裂。此外,IV 曲线的温度依赖性揭示了高电阻状态和低电阻状态的导电机制。对于低阻态,传导机制是由于电子跳跃机制,跳跃激活能为9.93 meV。对于高阻态,输运机制以空间电荷限制传导(SCLC)机制为主。
更新日期:2020-01-15
down
wechat
bug