当前位置: X-MOL 学术Sensors › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of UAV in Topographic Modelling and Structural Geological Mapping of Quarries and Their Surroundings-Delineation of Fault-Bordered Raw Material Reserves.
Sensors ( IF 3.4 ) Pub Date : 2020-01-15 , DOI: 10.3390/s20020489
Ákos Török 1 , Gyula Bögöly 1 , Árpád Somogyi 2 , Tamás Lovas 2
Affiliation  

A 3D surface model of an active limestone quarry and a vegetation-covered plateau was created using unmanned aerial vehicle (UAV) technique in combination with terrestrial laser scanning (TLS). The aim of the research was to identify major fault zones that dissect the inaccessible quarry faces and to prepare a model that shows the location of these fault zones at the entire study area. An additional purpose was to calculate reserves of the four identified lithological units. It was only possible to measure faults at the lowermost two meters of the quarry faces. At the upper parts of the quarry and on the vegetation-covered plateau where no field geological information was available, remote sensing was used. Former logs of core drillings were obtained for the modelling of the spatial distribution of four lithological units representing cover beds and various quality of limestone reserves. With the comparison of core data, field measurements and remote sensing, it was possible to depict major faults. Waste material volumes and limestone reserves were calculated for five blocks that are surrounded by these faults. The paper demonstrates that, with remote sensing and with localised control field measurements, it is possible: (a) to provide all geometric data of faults and (b) to create a 3D model with fault planes even at no exposure or at hardly accessible areas. The surface model with detected faults serves as a basis for calculating geological reserves.

中文翻译:

无人机在采石场及其周围环境的地形建模和结构地质制图中的应用-断层带界的原料储量描述。

使用无人机(UAV)技术与地面激光扫描(TLS)结合,创建了一个活跃的石灰石采石场和一个植被覆盖的高原的3D表面模型。该研究的目的是确定解剖无法进入采石场的主要断层带,并准备一个模型来显示这些断层带在整个研究区域的位置。另一个目的是计算四个确定的岩性单元的储量。只能在采石场最低两米处测量故障。在采石场的上部和没有植被地质信息的植被覆盖的高原上,使用了遥感技术。获得了岩心钻探的前测井图,用于模拟代表覆盖层和各种质量石灰岩储层的四个岩性单元的空间分布。通过比较核心数据,现场测量和遥感,可以描述主要故障。计算了这些断层包围的五个区块的废料量和石灰石储量。本文表明,通过遥感和局部控制场测量,有可能:(a)提供所有断层的几何数据,(b)即使在没有暴露或难以接近的区域,也可以创建带有断层的3D模型。 。具有检测到的断层的地表模型可作为计算地质储量的基础。现场测量和遥感,可以描述主要故障。计算了这些断层包围的五个区块的废料量和石灰石储量。本文表明,通过遥感和局部控制场测量,有可能:(a)提供所有断层的几何数据,(b)即使在没有暴露或难以接近的区域,也可以创建带有断层的3D模型。 。具有检测到的断层的地表模型可作为计算地质储量的基础。现场测量和遥感,可以描述主要故障。计算了这些断层包围的五个区块的废料量和石灰石储量。本文表明,通过遥感和局部控制场测量,有可能:(a)提供所有断层的几何数据,(b)即使在没有暴露或难以接近的区域,也可以创建带有断层的3D模型。 。具有检测到的断层的地表模型可作为计算地质储量的基础。(a)提供断层的所有几何数据,以及(b)甚至在没有暴露或难以接近的区域,创建具有断层平面的3D模型。具有检测到的断层的地表模型可作为计算地质储量的基础。(a)提供断层的所有几何数据,以及(b)即使在没有暴露或难以接近的区域,也可以创建带有断层平面的3D模型。具有检测到的断层的地表模型可作为计算地质储量的基础。
更新日期:2020-01-15
down
wechat
bug