当前位置: X-MOL 学术J. CO2 Util. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Decomposition of CO2 in a solar-gliding arc plasma reactor: Effects of water, nitrogen, methane, and process optimization
Journal of CO2 Utilization ( IF 7.2 ) Pub Date : 2020-01-14 , DOI: 10.1016/j.jcou.2020.01.007
Dassou Nagassou , Sina Mohsenian , Melisa Nallar , Peng Yu , Hsi-Wu Wong , Juan P. Trelles

The decomposition of carbon dioxide (CO2) is a primary step towards its utilization in chemical synthesis processes that can help mitigate atmospheric CO2 emissions and fulfill the need for fuels and chemicals. The synergistic utilization of solar and electrical energy is investigated in a solar - gliding arc (glidarc) plasma system for the decomposition of CO2. The approach exploits the highly reactive species and radicals present in gliding-arc plasmas (a form of nonequilibrium electrical discharge) and the absorption of solar energy by the plasma towards enhancing reaction kinetics involved in gas-phase atmospheric pressure CO2 decomposition. Solar-glidarc plasma processing is investigated using undiluted CO2 and mixtures of CO2 with water vapor (CO2 saturated with water vapor), nitrogen, and methane. A two-phase Design Of Experiments (DOE) approach is followed to guide the investigation and analyze experimental results: phase 1 to identify the significance of the main parameters of the solar-glidarc reactor operation, and phase 2 to evaluate the optimal operating conditions towards maximizing CO2 decomposition. The results reveal that the CO2:CH4 (7:1) mixture yielded the maximum CO2 conversion of 49%, followed by 44% by the CO2-N2 (1:7) gas mixture. In contrast, the undiluted CO2 and CO2-H2O experiments show maximum CO2 conversions of 5% and 3%, respectively, and energy efficiencies of 15% and 12%, respectively. The optimal performance of the solar-glidarc reactor is attained with the CO2-N2 gas mixture, reaching a maximum energy efficiency of 70% and CO2 conversion of 44%.



中文翻译:

太阳滑行电弧等离子体反应器中CO 2的分解:水,氮,甲烷的影响和工艺优化

二氧化碳(CO 2)的分解是迈向化学合成过程的第一步,这可以帮助减轻大气中的CO 2排放并满足对燃料和化学物质的需求。在太阳能滑行电弧(glidarc)等离子体系统中研究了太阳能和电能的协同利用,以分解CO 2。该方法利用了滑弧等离子体中存在的高反应性物质和自由基(一种非平衡放电形式)以及等离子体对太阳能的吸收,从而增强了涉及气相大气压CO 2分解的反应动力学。使用未稀释的CO 2研究了太阳胶束等离子体处理以及CO 2与水蒸气(CO 2充满水蒸气),氮气和甲烷的混合物。遵循两阶段实验设计(DOE)方法来指导研究和分析实验结果:第1阶段用于确定太阳能滑行反应堆运行的主要参数的重要性,第2阶段是评估朝着最佳状态运行的最佳运行条件最大化CO 2分解。结果表明,CO 2:CH 4(7:1)混合物产生的最大CO 2转化率为49%,其次是CO 2 -N 2(1:7)气体混合物的44%。相反,未稀释的CO 2和CO 2-H 2 O实验显示最大的CO 2转化率分别为5%和3%,能量效率分别为15%和12%。用CO 2 -N 2气体混合物可以达到太阳能-glidarc反应器的最佳性能,最大能量效率为70%,CO 2转化率为44%。

更新日期:2020-01-15
down
wechat
bug