当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
First-principles study on the structural, electronic, and Li-ion mobility properties of anti-perovskite superionic conductor Li3OCl (100) surface
Applied Surface Science ( IF 6.182 ) Pub Date : 2020-01-15 , DOI: 10.1016/j.apsusc.2020.145394
Musheng Wu; Bo Xu; Wenwei Luo; Baozhen Sun; Jing Shi; Chuying Ouyang

Surface properties play an important role in the application of antiperovskite Li3OCl as a promising solid-state electrolyte in all-solid-state Li-metal batteries. In this paper, we systematically investigated the stability, geometric structure, electronic properties and Li-ion mobility of a Li3OCl (100) surface using first-principles density functional theory calculations. Several geometric structure models were considered with different low Miller indices to obtain the most stable surface structure. The surface energies revealed that the Li3OCl (100) surface with Li- and Cl-termination on both sides was the most stable configuration, and the stability of the configuration was further verified by calculating the atomic relaxation and electronic properties. In addition, four types of point defects in the Li3OCl (100) surface were considered to study the Li-ion mobilities on the surface, and the results from calculating the defect formation energies and migration energy barriers showed that interstitial Li with a migration energy barrier of 0.086 eV is the most important carrier at the surface. The results provide fundamental insights into Li3OCl surface properties and Li-ion mobility at the surface.

更新日期:2020-01-15

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
科研绘图
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug