当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced H2 evolution and the interfacial electron transfer mechanism of titanate nanotube sensitized with CdS quantum dots and graphene quantum dots
International Journal of Hydrogen Energy ( IF 8.1 ) Pub Date : 2020-01-14 , DOI: 10.1016/j.ijhydene.2019.12.196
Jiayan Xue , Lizhen Long , Lin Zhang , Hongtian Luo , Li Yang , Fuchi Liu , Fengzhen Lv , Wenjie Kong , Jun Liu

Synergistic the modulation of photon absorption capability and interfacial charge transfer of the photocatalyst are highly required for developing high-performance heterojunction photocatalysts. The ternary CdS-graphene quantum dots-titanate nanotubes (CdS-GQDs-TNTs) nanocomposite have been prepared by an in situ growth method. The physicochemical characterization reveals that the GQDs are firmly decorated on both inner and outer surface of TNT through the formation of Ti–O–C chemical bonding, and CdS QDs are loaded on the outer surface of TNTs through strong interfacial interaction. The intimate integrated CdS-GQDs-TNTs nanocomposite exhibits much superior photocatalytic performance toward H2 production compared with binary GQDs-TNTs and pure TNTs photocatalyst, which can be attributed to the combined interaction of the stronger visible light harvesting, the longer lifetime of photogenerated electron−hole pairs, faster interfacial charge transfer rate, fast and long-distance electron transport pass. The interfacial charge transfer mechanism of CdS-GQDs-TNTs ternary composite are proposed based on photoelectrochemical measurements.



中文翻译:

CdS量子点和石墨烯量子点敏化的钛酸酯纳米管的增强的H 2析出和界面电子转移机制

开发高性能异质结光催化剂非常需要光子吸收能力的协同调节和光催化剂的界面电荷转移。通过原位生长方法制备了三元CdS-石墨烯量子点-钛纳米管(CdS-GQDs-TNTs)纳米复合材料。理化特性表明,通过形成Ti–O–C化学键,GQD在TNT的内外表面都得到了牢固的装饰,而CdS QD通过强的界面相互作用被装载在TNT的外表面上。紧密集成的CdS-GQDs-TNTs纳米复合材料对H 2表现出优异的光催化性能与二元GQDs-TNTs和纯TNTs光催化剂相比,可以产生更多的光,这可以归因于更强的可见光收集,更长的光生电子-空穴对寿命,更快的界面电荷转移速率,快速和长距离电子传输的相互作用通过。基于光电化学测量,提出了CdS-GQDs-TNTs三元复合材料的界面电荷转移机理。

更新日期:2020-01-15
down
wechat
bug