当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thiourea-Induced N/S Dual-Doped Hierarchical Porous Carbon Nanofibers for High-Performance Lithium-Ion Capacitors
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-01-14 00:00:00 , DOI: 10.1021/acsaem.9b02157
Ming Chen 1 , TrungHieu Le 1 , Yuanxiang Zhou 1 , Feiyu Kang 2 , Ying Yang 1
Affiliation  

Developing advanced carbon nanomaterials with reasonable pore distribution and interconnection and matching the charge-storage capacities and electrode kinetics between the capacitive electrode and the battery-type electrode are two of the biggest challenges in lithium-ion capacitors (LICs). In this work, a sustainable strategy to fabricate N/S dual-doped hierarchical porous carbon nanofibers (N/S-CNF) is developed via electrospinning and thiourea treatment, and the N/S-CNF is employed as both the capacitor-type cathode and the battery-type anode for LICs. With rational design, N/S-CNF can not only offer a large specific surface area with a hierarchical pore structure but also be uniformly doped with heteroatoms, which is desirable for improving the electrochemical performance of both the cathode and the anode for LICs and alleviating the mismatch between the two electrodes. LICs assembled with the designed N/S-CNF electrodes can deliver a high energy density of 154 Wh kg–1 with a stable capacitance retention of 92% after 6000 cycles. Our work is expected to open up new avenues for developing heteroatom-doped porous carbon nanomaterials applied in other energy conversion and storage devices.

中文翻译:

硫脲诱导的N / S双掺杂分层多孔碳纳米纤维,用于高性能锂离子电容器

开发具有合理的孔分布和互连性,并使电容电极与电池型电极之间的电荷存储容量和电极动力学相匹配的高级碳纳米材料,是锂离子电容器(LIC)面临的两个最大挑战。在这项工作中,通过静电纺丝和硫脲处理,开发了一种可持续的策略来制造N / S双掺杂分层多孔碳纳米纤维(N / S-CNF),并且将N / S-CNF用作电容器型阴极以及用于LIC的电池型阳极。通过合理的设计,N / S-CNF不仅可以提供具有分级孔隙结构的大比表面积,而且可以均匀地掺杂杂原子,对于改善LIC的阴极和阳极两者的电化学性能并减轻两个电极之间的失配,这是理想的。与设计的N / S-CNF电极组装在一起的LIC可以提供154 Wh kg的高能量密度–1,在6000次循环后具有92%的稳定电容保持率。我们的工作有望为开发适用于其他能量转换和存储设备的杂原子掺杂多孔碳纳米材料开辟新途径。
更新日期:2020-01-14
down
wechat
bug