当前位置: X-MOL 学术J. South Am. Earth Sci. › 论文详情
Linking rock age and soil cover across four islands on the Galápagos archipelago
Journal of South American Earth Sciences ( IF 1.704 ) Pub Date : 2020-01-15 , DOI: 10.1016/j.jsames.2020.102500
Franz Zehetner, Martin H. Gerzabek, J. Gregory Shellnutt, Franz Ottner, Christopher Lüthgens, Daniel P. Miggins, Pei-Hao Chen, I Nyoman Candra, Greta Schmidt, Maria V. Rechberger, Tobias Sprafke

The Galápagos Islands have been a place of preeminent scientific discoveries. The archipelago has formed on a tectonic plate moving over a volcanic hotspot, which has generated a chain of volcanic islands of different ages. This tectonic setting has favored the evolution of a unique flora and fauna on the islands; however, little is known on how it has influenced the formation and evolution of soils and belowground ecosystems. In order to enable the investigation of soil and ecosystem evolution, the aim of this study was to establish a soil chronosequence covering the full age range from the younger islands in the west to the older islands in the east of the archipelago. Six sites in the humid zones of the islands as well as two drier comparison sites were selected for this study. We characterized the geochemistry and mineralogy of the soil parent materials and constrained their ages using 14C (<10 ka) and 40Ar/39Ar dating. The parent materials are scoriaceous with bulk densities ≤1.6 g/cm3. Their major element composition is basaltic, including both alkali basalts and tholeiites. The scorias show amorphous contents between 20 and 85%, and their mineralogical composition is dominated by plagioclase and pyroxene. The numerical ages of the soil parent materials at the humid sites were: 1.45 ± 0.06 ka and 4.29 ± 0.09 ka on Isabela Island, 26 ± 7 ka on Floreana Island, 165.5 ± 11.6 ka on Santa Cruz Island, 825.6 ± 11.2 ka and 1070 ± 10 ka on San Cristóbal Island. Hence, the ages are distributed logarithmically covering a time span of approximately one million years. Along this chronosequence, we observed a non-linear increase in solum thickness, rubification degree and clay content with rock age. Changes were rapid in the initial phase of pedogenesis and more gradual in the later stages. Compared to the humid sites of the chronosequence, the pedogenic development at the dry comparison sites was much less advanced. The established chronosequence shall provide a solid basis for future studies on soil and ecosystem evolution in the unique environment of the Galápagos Islands.

更新日期:2020-01-15

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug