当前位置: X-MOL 学术Mech. Mach. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stage-by-phase multivariable combination control for centralized and distributed drive modes switching of electric vehicles
Mechanism and Machine Theory ( IF 4.5 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.mechmachtheory.2019.103752
Lipeng Zhang , Liuquan Yang , Xiaobin Guo , Xinmao Yuan

Abstract This paper presents a new modes switching control method based on a dual-motor centralized and distributed coupling drive system, which can achieve the centralized and distributed coupling drive and reduce the modes switching shock to improve electric vehicle dynamics performance. Initially, the influence of the switching speed on the shock is analyzed and the models of each modes switching stage are established. Furthermore, a stage-by-phase multivariable combination controller based on the control of position, velocity and force of the actuators is designed, and a load torque state observer is developed to estimate system interference. Finally, the shock suppression effect is testified by the upshift process simulation and the experiments of a centralized and distributed coupling drive electric vehicle. The research shows that the peak value of the switching process with the controller is 9 m/s3, which is lower than the recommended value of 10 m/s3. It laid the theoretical foundation for solving the mode switching problem of the centralized and distributed coupling drive electric vehicles.

中文翻译:

电动汽车集中与分布式驱动模式切换的逐相多变量组合控制

摘要 提出一种基于双电机集中分布式耦合驱动系统的模式切换控制新方法,可实现集中分布式耦合驱动,减少模式切换冲击,提高电动汽车的动力学性能。首先分析了切换速度对冲击的影响,建立了各模式切换阶段的模型。此外,设计了基于位置、速度和力控制的逐相多变量组合控制器,并开发了负载转矩状态观测器来估计系统干扰。最后,通过集中式和分布式耦合驱动电动汽车的升档过程仿真和实验验证了冲击抑制效果。研究表明,控制器切换过程的峰值为9 m/s3,低于推荐值10 m/s3。为解决集中分布式耦合驱动电动汽车的模式切换问题奠定了理论基础。
更新日期:2020-05-01
down
wechat
bug