当前位置: X-MOL 学术arXiv.cs.LO › 论文详情
On the linear structure of cones
arXiv - CS - Logic in Computer Science Pub Date : 2020-01-13 , DOI: arxiv-2001.04284
Thomas EhrhardIRIF

For encompassing the limitations of probabilistic coherence spaces which do not seem to provide natural interpretations of continuous data types such as the real line, Ehrhard and al. introduced a model of probabilistic higher order computation based on (positive) cones, and a class of totally monotone functions that they called "stable". Then Crubill{\'e} proved that this model is a conservative extension of the earlier probabilistic coherence space model. We continue these investigations by showing that the category of cones and linear and Scott-continuous functions is a model of intuitionistic linear logic. To define the tensor product, we use the special adjoint functor theorem, and we prove that this operation is and extension of the standard tensor product of probabilistic coherence spaces. We also show that these latter are dense in cones, thus allowing to lift the main properties of the tensor product of probabilistic coherence spaces to general cones. Last we define in the same way an exponential of cones and extend measurability to these new operations.
更新日期:2020-01-14

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug