当前位置: X-MOL 学术arXiv.cs.LO › 论文详情
On the linear structure of cones
arXiv - CS - Logic in Computer Science Pub Date : 2020-01-13 , DOI: arxiv-2001.04284
Thomas EhrhardIRIF

For encompassing the limitations of probabilistic coherence spaces which do not seem to provide natural interpretations of continuous data types such as the real line, Ehrhard and al. introduced a model of probabilistic higher order computation based on (positive) cones, and a class of totally monotone functions that they called "stable". Then Crubill{\'e} proved that this model is a conservative extension of the earlier probabilistic coherence space model. We continue these investigations by showing that the category of cones and linear and Scott-continuous functions is a model of intuitionistic linear logic. To define the tensor product, we use the special adjoint functor theorem, and we prove that this operation is and extension of the standard tensor product of probabilistic coherence spaces. We also show that these latter are dense in cones, thus allowing to lift the main properties of the tensor product of probabilistic coherence spaces to general cones. Last we define in the same way an exponential of cones and extend measurability to these new operations.
更新日期:2020-01-14

 

全部期刊列表>>
施普林格自然
最近合集,配们化学
欢迎访问IOP中国网站
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
复旦大学
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
刘冬生
试剂库存
down
wechat
bug