当前位置: X-MOL 学术arXiv.cs.GT › 论文详情
Resource Sharing in the Edge: A Distributed Bargaining-Theoretic Approach
arXiv - CS - Computer Science and Game Theory Pub Date : 2020-01-13 , DOI: arxiv-2001.04229
Faheem Zafari; Prithwish Basu; Kin K. Leung; Jian Li; Ananthram Swami; Don Towsley

The growing demand for edge computing resources, particularly due to increasing popularity of Internet of Things (IoT), and distributed machine/deep learning applications poses a significant challenge. On the one hand, certain edge service providers (ESPs) may not have sufficient resources to satisfy their applications according to the associated service-level agreements. On the other hand, some ESPs may have additional unused resources. In this paper, we propose a resource-sharing framework that allows different ESPs to optimally utilize their resources and improve the satisfaction level of applications subject to constraints such as communication cost for sharing resources across ESPs. Our framework considers that different ESPs have their own objectives for utilizing their resources, thus resulting in a multi-objective optimization problem. We present an $N$-person \emph{Nash Bargaining Solution} (NBS) for resource allocation and sharing among ESPs with \emph{Pareto} optimality guarantee. Furthermore, we propose a \emph{distributed}, primal-dual algorithm to obtain the NBS by proving that the strong-duality property holds for the resultant resource sharing optimization problem. Using synthetic and real-world data traces, we show numerically that the proposed NBS based framework not only enhances the ability to satisfy applications' resource demands, but also improves utilities of different ESPs.
更新日期:2020-01-14

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug