当前位置: X-MOL 学术arXiv.cs.ET › 论文详情
Reservoir computing for sensing: an experimental approach
arXiv - CS - Emerging Technologies Pub Date : 2020-01-10 , DOI: arxiv-2001.04342
Dawid Przyczyna; Sébastien Pecqueur; Dominique Vuillaume; Konrad Szaciłowski

The increasing popularity of machine learning solutions puts increasing restrictions on this field if it is to penetrate more aspects of life. In particular, energy efficiency and speed of operation is crucial, inter alia in portable medical devices. The Reservoir Computing (RC) paradigm poses as a solution to these issues through foundation of its operation: the reservoir of states. Adequate separation of input information translated into the internal state of the reservoir, whose connections do not need to be trained, allow to simplify the readout layer thus significantly accelerating the operation of the system. In this brief review article, the theoretical basis of RC was first described, followed by a description of its individual variants, their development and state-of-the-art applications in chemical sensing and metrology: detection of impedance changes and ion sensing. Presented results indicate applicability of reservoir computing for sensing and validating the SWEET algorithm experimentally.
更新日期:2020-01-14

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug