当前位置: X-MOL 学术arXiv.cs.ET › 论文详情
Reservoir computing for sensing: an experimental approach
arXiv - CS - Emerging Technologies Pub Date : 2020-01-10 , DOI: arxiv-2001.04342
Dawid Przyczyna; Sébastien Pecqueur; Dominique Vuillaume; Konrad Szaciłowski

The increasing popularity of machine learning solutions puts increasing restrictions on this field if it is to penetrate more aspects of life. In particular, energy efficiency and speed of operation is crucial, inter alia in portable medical devices. The Reservoir Computing (RC) paradigm poses as a solution to these issues through foundation of its operation: the reservoir of states. Adequate separation of input information translated into the internal state of the reservoir, whose connections do not need to be trained, allow to simplify the readout layer thus significantly accelerating the operation of the system. In this brief review article, the theoretical basis of RC was first described, followed by a description of its individual variants, their development and state-of-the-art applications in chemical sensing and metrology: detection of impedance changes and ion sensing. Presented results indicate applicability of reservoir computing for sensing and validating the SWEET algorithm experimentally.
更新日期:2020-01-14

 

全部期刊列表>>
施普林格自然
最近合集,配们化学
欢迎访问IOP中国网站
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
复旦大学
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
刘冬生
试剂库存
down
wechat
bug