当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
On-Surface Dehydro-Diels-Alder Reaction of Dibromo-bis(phenylethynyl)benzene.
Journal of the American Chemical Society ( IF 14.612 ) Pub Date : 2020-01-21 , DOI: 10.1021/jacs.9b11755
Marco Di Giovannantonio,Ashok Keerthi,José I Urgel,Martin Baumgarten,Xinliang Feng,Pascal Ruffieux,Akimitsu Narita,Roman Fasel,Klaus Müllen

On-surface synthesis under ultrahigh vacuum conditions is a powerful tool to achieve molecular structures that cannot be accessed via traditional wet chemistry. Nevertheless, only a very limited number of chemical reactions out of the wide variety known from solution chemistry have been reported to proceed readily on atomically flat substrates. Cycloadditions are a class of reactions that are particularly important in the synthesis of sp2-hybridized carbon-based nanostructures. Here, we report on a specific type of [4 + 2] cycloaddition, namely, a dehydro-Diels-Alder (DDA) reaction, performed between bis(phenylethynyl)-benzene precursors on Au(111). Unlike a Diels-Alder reaction, DDA exploits ethynyl groups to achieve the formation of an extra six-membered ring. Despite its extensive use in solution chemistry for more than a century, this reaction has never been reported to occur on surfaces. The specific choice of our precursor molecule has led to the successful synthesis of benzo- and naphtho-fused tetracene and heptacene products bearing styryl groups, as confirmed by scanning tunneling microscopy and noncontact atomic force microscopy. The two products arise from dimerization and trimerization of the precursor molecules, respectively, and their observation opens perspectives to use DDA reactions as a novel on-surface synthesis tool.
更新日期:2020-01-22

 

全部期刊列表>>
施普林格自然
最近合集,配们化学
欢迎访问IOP中国网站
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
复旦大学
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
刘冬生
试剂库存
down
wechat
bug