当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonvolatile Resistive Switching in Nanocrystalline Molybdenum Disulfide with Ion‐Based Plasticity
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2020-01-14 , DOI: 10.1002/aelm.201900892
Melkamu Belete 1 , Satender Kataria 1 , Aykut Turfanda 1 , Sam Vaziri 2 , Thorsten Wahlbrink 3 , Olof Engström 3 , Max C. Lemme 1, 3
Affiliation  

Non‐volatile resistive switching is demonstrated in memristors with nanocrystalline molybdenum disulfide (MoS2) as the active material. The vertical heterostructures consist of silicon (Si), vertically aligned MoS2, and chrome/gold metal electrodes. Electrical characterizations reveal a bipolar and forming‐free switching process with stable retention for at least 2500 s. Controlled experiments carried out in ambient and vacuum conditions suggest that the observed resistive switching is based on hydroxyl ions (OH). These originate from catalytic splitting of adsorbed water molecules by MoS2. Experimental results in combination with analytical simulations further suggest that electric field driven movement of the mobile OH ions along the vertical MoS2 layers influences the energy barrier at the Si/MoS2 interface. The scalable and semiconductor production compatible device fabrication process used in this work offers the opportunity to integrate such memristors into existing Si technology for future neuromorphic applications. The observed ion‐based plasticity may be exploited in ionic‐electronic devices based on transition metal dichalcogenides and other 2D materials for memristive applications.

中文翻译:

具有离子可塑性的纳米二硫化钼的非易失性电阻转换

在以纳米晶二硫化钼(MoS 2)为活性材料的忆阻器中证明了非易失性电阻开关。垂直异质结构由硅(Si),垂直排列的MoS 2和铬/金金属电极组成。电气特性表明,双极性和无成形开关过程具有至少2500 s的稳定保持时间。在环境温度和真空条件下进行对照实验表明,所观察到的电阻切换是基于氢氧根离子(OH - )。这些源于MoS 2对吸附的水分子的催化分裂。实验结果与分析模拟相结合进一步表明,电场驱动移动式OH的运动沿垂直MoS 2层的离子会影响Si / MoS 2界面的能垒。在这项工作中使用的可伸缩且与半导体生产兼容的器件制造工艺提供了将此类忆阻器集成到现有的Si技术中以用于未来神经形态应用的机会。所观察到的基于离子的可塑性可用于基于忆阻应用的过渡金属二卤化物和其他2D材料的离子电子设备中。
更新日期:2020-03-09
down
wechat
bug