当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface modification of coordination polymers to enable the construction of CoP/N,P-codoped carbon nanowires towards high-performance lithium storage.
Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2020-01-14 , DOI: 10.1016/j.jcis.2020.01.037
Huanhuan Li 1 , Yuqiang Zhu 1 , Kangjia Zhao 2 , Qi Fu 2 , Kui Wang 2 , Yaping Wang 2 , Nan Wang 1 , Xiaoxin Lv 1 , Haobin Jiang 1 , Long Chen 1
Affiliation  

A one-dimensional hybrid with N,P co-doped carbon nanowires threaded CoP nanoparticles is rationally fabricated by employing surface modified coordination polymers as a precursor. Ultrasmall CoP nanoparticlesare well encapsulated in N,P co-doped carbon nanowires, which can effectively buffer the volume expansion of active CoP and facilitate fast lithium-ion/electron transfer during charge/discharge processes. Moreover, N,P co-doped carbon with high defect density and graphitic-N content are obtained, which facilitates high lithium storage capacity and fast electron transfer. As a result, attractive lithium storage properties are gained by employing this unique architecture as an anode material for lithium-ion batteries, including high reversible charge/discharge capacities, good rate capability, and excellent long-term cycling stability. Kinetic investigation shows that the fast lithium ion uptake/release is related to the remarkable capacitive contribution. This work may offer an effective way for design well-defined transition metal phosphide-based anodes for advanced lithium-ion batteries.

中文翻译:

配位聚合物的表面改性,使得能够构建CoP / N,P共掺杂的碳纳米线,以实现高性能的锂存储。

通过采用表面改性的配位聚合物作为前驱体,合理地制备了带有N,P共掺杂碳纳米线的CoP纳米粒子的一维杂化体。超小型CoP纳米颗粒很好地封装在N,P共掺杂的碳纳米线中,可以有效地缓冲活性CoP的体积膨胀,并在充电/放电过程中促进快速的锂离子/电子转移。而且,获得了具有高缺陷密度和石墨态-N含量的N,P共掺杂碳,其有助于高锂存储容量和快速的电子转移。结果,通过采用这种独特的结构作为锂离子电池的负极材料,可以获得有吸引力的锂存储性能,包括高的可逆充电/放电容量,良好的倍率性能和出色的长期循环稳定性。动力学研究表明,锂离子的快速吸收/释放与显着的电容贡献有关。这项工作可能为设计用于高级锂离子电池的明确定义的基于过渡金属磷化物的阳极提供有效途径。
更新日期:2020-01-14
down
wechat
bug