当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Self‐Assembled Plasmonic Substrate for Enhanced Fluorescence Resonance Energy Transfer
Advanced Materials ( IF 27.4 ) Pub Date : 2020-01-14 , DOI: 10.1002/adma.201906475
Shuai Hou 1 , Yonghao Chen 1 , Derong Lu 1 , Qirong Xiong 1 , Yun Lim 1 , Hongwei Duan 1
Affiliation  

Fluorescence resonance energy transfer (FRET) has found widespread uses in biosensing, molecular imaging, and light harvesting. Plasmonic metal nanostructures offer the possibility of engineering photonic environment of specific fluorophores to enhance the FRET efficiency. However, the potential of plasmonic nanostructures to enable tailored FRET enhancement on planar substrates remains largely unrealized, which are of considerable interest for high‐performance on‐surface bioassays and photovoltaics. The main challenge lies in the necessitated concurrent control over the spectral properties of plasmonic substrates to match that of fluorophores and the fluorophore–substrate spacing. Here, a self‐assembled plasmonic substrate based on polydopamine (PDA)‐coated plasmonic nanocrystals is developed to effectively address this challenge. The PDA coating not only drives interfacial self‐assembly of the nanocrystals to form closely packed arrays with customized optical properties, but also can serve as a tailored nanoscale spacer between the fluorophores and plasmonic nanocrystals, which collectively lead to optimized fluorescence enhancement. The biocompatible plasmonic substrate that allows convenient bioconjugation imparted by PDA has afforded improved FRET efficiency in DNA microarray assay and FRET imaging of live cells. It is envisioned that the self‐assembled plasmonic substrates can be readily integrated into fluorescence‐based platforms for diverse biomedical and photoconversion applications.

中文翻译:

自组装的等离子基板,增强了荧光共振能量转移。

荧光共振能量转移(FRET)已在生物传感,分子成像和光收集中得到广泛应用。等离子体金属纳米结构为特定荧光团的工程光子环境提供了可能性,以提高FRET效率。然而,等离子纳米结构在平面基板上实现量身定制的FRET增强的潜力仍未实现,这对于高性能的表面生物测定和光伏技术具有相当大的兴趣。主要挑战在于必须同时控制等离激元底物的光谱特性,以使其与荧光团的光谱特性和荧光团-底物的间距相匹配。在这里,开发了一种基于聚多巴胺(PDA)涂层的等离激元纳米晶体的自组装等离激元基板,以有效应对这一挑战。PDA涂层不仅可以驱动纳米晶体的界面自组装形成具有定制光学特性的紧密堆积阵列,而且还可以充当荧光团和等离激元纳米晶体之间的量身定制的纳米级间隔物,从而共同导致优化的荧光增强。可通过PDA进行方便的生物缀合的生物相容性等离子底物在DNA微阵列测定和活细胞FRET成像方面提供了提高的FRET效率。可以预见,自组装的等离激元基板可以很容易地集成到基于荧光的平台中,以用于各种生物医学和光转换应用。而且还可以用作荧光团和等离激元纳米晶体之间的定制纳米级间隔物,共同导致优化的荧光增强。可通过PDA进行方便的生物缀合的生物相容性等离子底物在DNA微阵列测定和活细胞FRET成像方面提供了提高的FRET效率。可以预见,自组装的等离激元基板可以很容易地集成到基于荧光的平台中,以用于各种生物医学和光转换应用。而且还可以用作荧光团和等离激元纳米晶体之间的定制纳米级间隔物,共同导致优化的荧光增强。可通过PDA进行方便的生物缀合的生物相容性等离子底物在DNA微阵列测定和活细胞FRET成像方面提供了提高的FRET效率。可以预见,自组装的等离激元基板可以很容易地集成到基于荧光的平台中,以用于各种生物医学和光转换应用。
更新日期:2020-02-24
down
wechat
bug