当前位置: X-MOL 学术Front. Immunol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bacterial Exposure Mediates Developmental Plasticity and Resistance to Lethal Vibrio lentus Infection in Purple Sea Urchin (Strongylocentrotus purpuratus) Larvae.
Frontiers in Immunology ( IF 5.7 ) Pub Date : 2020-01-14 , DOI: 10.3389/fimmu.2019.03014
Nicholas W Schuh 1, 2, 3 , Tyler J Carrier 4 , Catherine S Schrankel 2, 5, 6 , Adam M Reitzel 4 , Andreas Heyland 3 , Jonathan P Rast 1, 2, 5, 7, 8
Affiliation  

Exposure to and colonization by bacteria during development have wide-ranging beneficial effects on animal biology but can also inhibit growth or cause disease. The immune system is the prime mediator of these microbial interactions and is itself shaped by them. Studies using diverse animal taxa have begun to elucidate the mechanisms underlying the acquisition and transmission of bacterial symbionts and their interactions with developing immune systems. Moreover, the contexts of these associations are often confounded by stark differences between "wild type" microbiota and the bacterial communities associated with animals raised in conventional or germ-free laboratories. In this study, we investigate the spatio-temporal kinetics of bacterial colonization and associated effects on growth and immune function in larvae of the purple sea urchin (Strongylocentrotus purpuratus) as a model for host-microbe interactions and immune system development. We also compare the host-associated microbiota of developing embryos and larvae raised in natural seawater or exposed to adult-associated bacteria in the laboratory. Bacteria associated with zygotes, embryos, and early larvae are detectable with 16S amplicon sequencing, but 16S-FISH indicates that the vast majority of larval bacterial load is acquired after feeding begins and is localized to the gut lumen. The bacterial communities of laboratory-cultured embryos are significantly less diverse than the natural microbiota but recapitulate its major components (Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes), suggesting that biologically relevant host-microbe interactions can be studied in the laboratory. We also demonstrate that bacterial exposure in early development induces changes in morphology and in the immune system. In the absence of bacteria, larvae grow larger at the 4-arm stage. Additionally, bacteria-exposed larvae are significantly more resistant to lethal infection with the larva-associated pathogen Vibrio lentus suggesting that early exposure to high levels of microbes, as would be expected in natural conditions, affects the immune state in later larvae. These results expand our knowledge of microbial influences on early sea urchin development and establish a model in which to study the interactions between the developing larval immune system and the acquisition of larval microbiota.

中文翻译:

细菌暴露介导了紫海胆(Strongylocentrotus purpuratus)幼虫的发育可塑性和对致命性弧菌弧菌感染的抵抗力。

细菌在发育过程中的接触和定植对动物生物学有广泛的有益影响,但也可能抑制生长或引起疾病。免疫系统是这些微生物相互作用的主要介体,并受其自身影响。使用多种动物类群的研究已开始阐明细菌共生体的获取和传播及其与发展中的免疫系统的相互作用的潜在机制。而且,这些联系的背景常常被“野生型”微生物群和与常规或无菌实验室饲养的动物相关的细菌群落之间的明显差异所混淆。在这个研究中,我们调查了细菌定居的时空动力学及其对紫海胆(Strongylocentrotus purpuratus)幼虫生长和免疫功能的相关影响,作为宿主-微生物相互作用和免疫系统发育的模型。我们还在实验室中比较了在天然海水中饲养或暴露于成年相关细菌的发育中胚胎和幼虫的宿主相关微生物区系。与合子,胚胎和早期幼虫相关的细菌可通过16S扩增子测序检测到,但16S-FISH表明绝大多数幼虫细菌负荷是在开始喂食后获得的,并且位于肠道内腔。实验室培养的胚胎的细菌群落比自然微生物群多样性要差得多,但概括了其主要成分(丙型杆菌,丙酸杆菌和拟杆菌),表明可以在实验室研究生物学相关的宿主-微生物相互作用。我们还证明了细菌在早期发育中的暴露会诱导形态和免疫系统发生变化。在没有细菌的情况下,幼虫在四臂阶段长得更大。此外,暴露于细菌的幼虫对与幼虫相关的病原体弧菌弧菌的致死感染的抵抗力明显更高,这表明,如自然条件下所预期的那样,早期接触高水平的微生物会影响后期幼虫的免疫状态。这些结果扩展了我们对微生物对早期海胆发育的影响的知识,并建立了一个模型,用于研究发育中的幼虫免疫系统与幼虫菌群获取之间的相互作用。和拟杆菌),这表明可以在实验室研究生物学相关的宿主-微生物相互作用。我们还证明了细菌在早期发育中的暴露会诱导形态和免疫系统发生变化。在没有细菌的情况下,幼虫在四臂阶段长得更大。此外,暴露于细菌的幼虫对与幼虫相关的病原体弧菌弧菌的致死感染的抵抗力明显更高,这表明,如自然条件下所预期的那样,早期接触高水平的微生物会影响后期幼虫的免疫状态。这些结果扩展了我们对微生物对早期海胆发育的影响的知识,并建立了一个模型,用于研究发育中的幼虫免疫系统与幼虫菌群获取之间的相互作用。和拟杆菌),这表明可以在实验室研究生物学相关的宿主-微生物相互作用。我们还证明了细菌在早期发育中的暴露会引起形态学和免疫系统的变化。在没有细菌的情况下,幼虫在四臂阶段长得更大。此外,暴露于细菌的幼虫对与幼虫相关的病原体弧菌弧菌的致死感染的抵抗力明显更高,这表明,如自然条件下所预期的那样,早期接触高水平的微生物会影响后期幼虫的免疫状态。这些结果扩展了我们对微生物对早期海胆发育的影响的知识,并建立了一个模型,用于研究发育中的幼虫免疫系统与幼虫菌群获取之间的相互作用。这表明可以在实验室研究生物学相关的宿主-微生物相互作用。我们还证明了细菌在早期发育中的暴露会引起形态学和免疫系统的变化。在没有细菌的情况下,幼虫在四臂阶段长得更大。此外,暴露于细菌的幼虫对与幼虫相关的病原体弧菌弧菌的致死感染的抵抗力明显更高,这表明,如自然条件下所预期的那样,早期接触高水平的微生物会影响后期幼虫的免疫状态。这些结果扩展了我们对微生物对早期海胆发育的影响的知识,并建立了一个模型,用于研究发育中的幼虫免疫系统与幼虫菌群获取之间的相互作用。这表明可以在实验室研究生物学相关的宿主-微生物相互作用。我们还证明了细菌在早期发育中的暴露会引起形态学和免疫系统的变化。在没有细菌的情况下,幼虫在四臂阶段长得更大。此外,暴露于细菌的幼虫对与幼虫相关的病原体弧菌弧菌的致死感染的抵抗力明显更高,这表明,如自然条件下所预期的那样,早期接触高水平的微生物会影响后期幼虫的免疫状态。这些结果扩展了我们对微生物对早期海胆发育的影响的知识,并建立了一个模型,用于研究发育中的幼虫免疫系统与幼虫菌群获取之间的相互作用。
更新日期:2020-01-16
down
wechat
bug