当前位置: X-MOL 学术Appl. Phys. A › 论文详情
Extending bandgap method of concentric ring locally resonant phononic crystals
Applied Physics A ( IF 1.784 ) Pub Date : 2020-01-14 , DOI: 10.1007/s00339-019-3277-2
Lijian Lei, Linchang Miao, Chao Li, Xiaodong Liang, Junjie Wang

Abstract Locally resonant phononic crystals (LRPCs) have the capacity to adjust elastic waves with the structure sizes much smaller than the incident wavelengths, the unique property is called low-frequency bandgap, but it is not easily applied in practical engineering because of narrow bandgap width. Multilayered LRPCs are helpful in generating several bandgaps, in the meanwhile the designs of multilayered LRPCs proposed in previous study result in the larger filling fraction, whereas the bandwidth of LRPCs increases monotonically with filling fraction, thus the pure contribution of concentric ring configuration to the bandwidth extending is less involved. Keeping the filling fraction constant, this paper carefully designs the microstructure of concentric ring locally resonant phononic crystals, and investigates the effects of structure configuration on the bandgap property. To this end, an updated improved plane wave expansion (UIPWE) method is developed to calculate the band structure, and finite element method (FEM) is used to obtain transmission spectra and vibration mode. The results demonstrate that UIPWE method is valid and is able to give precise outcomes, which is verified by FEM. In addition, the concentric ring configuration equivalently produces dual-oscillator system, relative movements between the oscillators generate coupling effect, thus, the bandgaps can be extended by configurating rightly the microstructure of single cell. Further studies about different models indicate that the combination of smaller inner scatterers and larger inner coating layers are beneficial to wider bandgap. These conclusions presented herein provide insights in the design of three-component PCs in multi-frequency vibration control field.
更新日期:2020-01-14

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug