当前位置: X-MOL 学术Nat. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Entorhinal velocity signals reflect environmental geometry
Nature Neuroscience ( IF 21.2 ) Pub Date : 2020-01-13 , DOI: 10.1038/s41593-019-0562-5
Robert G K Munn 1 , Caitlin S Mallory 1 , Kiah Hardcastle 1 , Dane M Chetkovich 2 , Lisa M Giocomo 1
Affiliation  

The entorhinal cortex contains neurons that represent self-location, including grid cells that fire in periodic locations and velocity signals that encode running speed and head direction. Although the size and shape of the environment influence grid patterns, whether entorhinal velocity signals are equally influenced or provide a universal metric for self-motion across environments remains unknown. Here we report that speed cells rescale after changes to the size and shape of the environment. Moreover, head direction cells reorganize in an experience-dependent manner to align with the axis of environmental change. A knockout mouse model allows dissociation of the coordination between cell types, with grid and speed cells, but not head direction cells, responding in concert to environmental change. These results point to malleability in the coding features of multiple entorhinal cell types and have implications for which cell types contribute to the velocity signal used by computational models of grid cells.



中文翻译:


内嗅速度信号反映环境几何形状



内嗅皮层包含代表自我定位的神经元,包括以周期性位置放电的网格细胞以及编码跑步速度和头部方向的速度信号。尽管环境的大小和形状影响网格模式,但内嗅速度信号是否受到同样的影响或为跨环境的自运动提供通用度量仍然未知。在这里,我们报告了速度单元在环境的大小和形状发生变化后会重新缩放。此外,头部方向细胞以依赖于经验的方式重组,以与环境变化的轴保持一致。基因敲除小鼠模型允许细胞类型之间的协调解离,其中网格和速度细胞,但不是头部方向细胞,对环境变化做出一致反应。这些结果表明多种内嗅细胞类型的编码特征具有可塑性,并且对于哪些细胞类型有助于网格细胞计算模型所使用的速度信号具有影响。

更新日期:2020-01-13
down
wechat
bug