当前位置: X-MOL 学术Chemosphere › 论文详情
Ferrocyanide removal from solution by aluminum-based drinking water treatment residue.
Chemosphere ( IF 5.778 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.chemosphere.2020.125919
Xin Liu,Rui Liu,Nannan Yuan,Yuanyuan Zhao,Changhui Wang,Xinyue Wan,Yubo Shang

This study proposes the use of an aluminum-based drinking water treatment residue (DWTR) to adsorb ferrocyanide. The batch tests and chemical characterization results showed that ferrocyanide adsorption increased as the pH, ion strength, and the solid and solution ratio decreased, and as the initial ferrocyanide concentration increased. The pseudo-first (R2 = 0.906) and pseudo-second-order (R2 = 0.966) kinetic models well described the adsorption kinetics, and the adsorption isotherm was also well fittted by Langmuir (R2 = 0.989) and Freundlich (R2 = 0.989) models. The calculated initial ferrocyanide adsorption rate by the pseudo-second-order kinetic model was 0.0190 mg-CN g-1 h-1, and the estimated maximum adsorption capacity determined by the Langmuir model was 20.9 mg-CN g-1. The main structure and elemental distributions showed nearly no change in DWTR after adsorption. Adsorption involved electrostatic interactions and ligand exchanges with Al in DWTR, as evidenced by the 1.40 eV increase in the Al binding energy after adsorption. Furthermore, ferrocyanide adsorption had a dual effect on the DWTR porosity (including both increase and decrease effect), resulting in a slight increase in the specific surface area and total pore volume of DWTR after adsorption. This dual effect was likely related to Fe present in ferrocyanide, which introduced new vacant sites on DWTR. Overall, recycled DWTR is a promising potential adsorbent for ferrocyanide.
更新日期:2020-01-14

 

全部期刊列表>>
施普林格自然
最近合集,配们化学
欢迎访问IOP中国网站
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
复旦大学
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
刘冬生
试剂库存
down
wechat
bug