当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ferrocyanide removal from solution by aluminum-based drinking water treatment residue.
Chemosphere ( IF 8.8 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.chemosphere.2020.125919
Xin Liu 1 , Rui Liu 2 , Nannan Yuan 3 , Yuanyuan Zhao 4 , Changhui Wang 5 , Xinyue Wan 5 , Yubo Shang 5
Affiliation  

This study proposes the use of an aluminum-based drinking water treatment residue (DWTR) to adsorb ferrocyanide. The batch tests and chemical characterization results showed that ferrocyanide adsorption increased as the pH, ion strength, and the solid and solution ratio decreased, and as the initial ferrocyanide concentration increased. The pseudo-first (R2 = 0.906) and pseudo-second-order (R2 = 0.966) kinetic models well described the adsorption kinetics, and the adsorption isotherm was also well fittted by Langmuir (R2 = 0.989) and Freundlich (R2 = 0.989) models. The calculated initial ferrocyanide adsorption rate by the pseudo-second-order kinetic model was 0.0190 mg-CN g-1 h-1, and the estimated maximum adsorption capacity determined by the Langmuir model was 20.9 mg-CN g-1. The main structure and elemental distributions showed nearly no change in DWTR after adsorption. Adsorption involved electrostatic interactions and ligand exchanges with Al in DWTR, as evidenced by the 1.40 eV increase in the Al binding energy after adsorption. Furthermore, ferrocyanide adsorption had a dual effect on the DWTR porosity (including both increase and decrease effect), resulting in a slight increase in the specific surface area and total pore volume of DWTR after adsorption. This dual effect was likely related to Fe present in ferrocyanide, which introduced new vacant sites on DWTR. Overall, recycled DWTR is a promising potential adsorbent for ferrocyanide.

中文翻译:

铝基饮用水处理残留物从溶液中去除亚铁氰化物。

这项研究建议使用铝基饮用水处理残渣(DWTR)吸附亚铁氰化物。批处理试验和化学表征结果表明,亚铁氰化物的吸附量随pH值,离子强度,固液比的降低以及初始亚铁氰化物浓度的增加而增加。拟一级动力学模型(R2 = 0.906)和拟二级动力学模型(R2 = 0.966)很好地描述了吸附动力学,Langmuir(R2 = 0.989)和Freundlich(R2 = 0.989)也很好地拟合了吸附等温线。楷模。通过拟二阶动力学模型计算的初始亚铁氰化物初始吸附速率为0.0190 mg-CN g-1 h-1,由Langmuir模型确定的估计最大吸附容量为20.9 mg-CN g-1。吸附后,DWTR的主要结构和元素分布几乎没有变化。吸附涉及DWTR中与Al的静电相互作用和配体交换,吸附后Al结合能增加1.40 eV即可证明。此外,亚铁氰化物的吸附对DWTR孔隙率具有双重影响(包括增加和减少作用),导致吸附后DWTR的比表面积和总孔体积略有增加。这种双重作用可能与亚铁氰化物中的铁有关,铁在DWTR上引入了新的空位。总体而言,回收的DWTR是潜在的亚铁氰化物吸附剂。吸附后Al结合能增加40 eV。此外,亚铁氰化物的吸附对DWTR孔隙率具有双重影响(包括增加和减少作用),导致吸附后DWTR的比表面积和总孔体积略有增加。这种双重作用可能与亚铁氰化物中的铁有关,铁在DWTR上引入了新的空位。总体而言,回收的DWTR是潜在的亚铁氰化物吸附剂。吸附后Al结合能增加40 eV。此外,亚铁氰化物的吸附对DWTR孔隙率具有双重影响(包括增加和减少作用),导致吸附后DWTR的比表面积和总孔体积略有增加。这种双重作用可能与亚铁氰化物中的铁有关,铁在DWTR上引入了新的空位。总体而言,回收的DWTR是潜在的亚铁氰化物吸附剂。
更新日期:2020-01-14
down
wechat
bug