当前位置: X-MOL 学术Discret. Math. › 论文详情
Improving lower bounds on the second-order nonlinearity of three classes of Boolean functions
Discrete Mathematics ( IF 0.728 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.disc.2019.111698
Haode Yan; Deng Tang

Boolean functions used in symmetric-key cryptosystems must have high second-order nonlinearity to withstand several known attacks and some potential attacks which may exist but are not yet efficient and might be improved in the future. The second-order nonlinearity of Boolean functions also plays an important role in coding theory, since the maximal second-order nonlinearity of all Boolean functions in n variables equals the covering radius of the Reed–Muller code with length 2n and order r. It is well-known that providing a tight lower bound on the second-order nonlinearity of a general Boolean function with high algebraic degree is a hard task, excepting a few special classes of Boolean functions. In this paper, we improve the lower bounds on the second-order nonlinearity of three classes of Boolean functions of the form fi(x)=Tr1n(xdi) in n variables for i=1,2 and 3, where Tr1n denotes the absolute trace mapping from F2n to F2 and di’s are of the form (1) d1=2m+1+3 and n=2m, (2) d2=2m+2m+12+1, n=2m with odd m, and (3) d3=22r+2r+1+1 and n=4r with even r.
更新日期:2020-01-14

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug