当前位置: X-MOL 学术Discret. Math. › 论文详情
Improving lower bounds on the second-order nonlinearity of three classes of Boolean functions
Discrete Mathematics ( IF 0.770 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.disc.2019.111698
Haode Yan; Deng Tang

Boolean functions used in symmetric-key cryptosystems must have high second-order nonlinearity to withstand several known attacks and some potential attacks which may exist but are not yet efficient and might be improved in the future. The second-order nonlinearity of Boolean functions also plays an important role in coding theory, since the maximal second-order nonlinearity of all Boolean functions in n variables equals the covering radius of the Reed–Muller code with length 2n and order r. It is well-known that providing a tight lower bound on the second-order nonlinearity of a general Boolean function with high algebraic degree is a hard task, excepting a few special classes of Boolean functions. In this paper, we improve the lower bounds on the second-order nonlinearity of three classes of Boolean functions of the form fi(x)=Tr1n(xdi) in n variables for i=1,2 and 3, where Tr1n denotes the absolute trace mapping from F2n to F2 and di’s are of the form (1) d1=2m+1+3 and n=2m, (2) d2=2m+2m+12+1, n=2m with odd m, and (3) d3=22r+2r+1+1 and n=4r with even r.

更新日期:2020-01-14

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
张健
陈芬儿
厦门大学
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug