当前位置: X-MOL 学术Tribol Int › 论文详情
Tribological performance of a novel wide-temperature applicable a-C/(WC/a-C) film against M50 steel
Tribology international ( IF 3.517 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.triboint.2020.106189
Zeqing Li; Honghong Zhang; Weifeng He; Chuansheng Ma; Guang'an Zhang; Xiangfan Nie; Yinghong Li

To improve the wide-temperature applicability of amorphous carbon-based films, a novel a-C/(WC/a-C) film compositing of a-C nano-layers and super-latticed WC/a-C nano-multilayers was proposed and successfully fabricated on M50NiL substrate by an unbalanced magnetron sputtering system. For comparison, a monolayer a-C film and a super-latticed WC/a-C film were also prepared on the same substrates. The microstructures, mechanical properties and thermal stability of the as-deposited films were investigated. Particularly, the tribological behaviors of films against M50 counterpart were evaluated at the temperatures ranging from 25 °C to 350 °C. The results showed that because of the excellent thermal stability of super-latticed WC/a-C sublayers, the a-C/(WC/a-C) film has effectively overcome the poor tribological performance of a-C film at high temperatures (≥200 °C). While benefiting from the good toughness of a-C sublayers, the a-C/(WC/a-C) film showed significant better wear resistance than the WC/a-C film at the temperatures of 25–200 °C. The best wide-temperature applicability of the novel a-C/(WC/a-C) film should be attributed to the favorable mechanical properties, together with the formations of carbon-rich transfer film at 25–150 °C and WO3-rich transfer film at 200–350 °C.
更新日期:2020-01-14

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug